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In this paper, a new approach for detecting previously unencountered malware targeting mobile device is
proposed. In the proposed approach, time-stamped security data is continuously monitored within the
target mobile device (i.e., smartphones, PDAs) and then processed by the knowledge-based temporal
abstraction (KBTA) methodology. Using KBTA, continuously measured data (e.g., the number of sent
SMSs) and events (e.g., software installation) are integrated with a mobile device security domain knowl-
edge-base (i.e., an ontology for abstracting meaningful patterns from raw, time-oriented security data), to
create higher level, time-oriented concepts and patterns, also known as temporal abstractions. Automat-
ically-generated temporal abstractions are then monitored to detect suspicious temporal patterns and to
issue an alert. These patterns are compatible with a set of predefined classes of malware as defined by a
security expert (or the owner) employing a set of time and value constraints. The goal is to identify mali-
cious behavior that other defensive technologies (e.g., antivirus or firewall) failed to detect. Since the
abstraction derivation process is complex, the KBTA method was adapted for mobile devices that are lim-
ited in resources (i.e., CPU, memory, battery). To evaluate the proposed modified KBTA method a light-
weight host-based intrusion detection system (HIDS), combined with central management capabilities
for Android-based mobile phones, was developed. Evaluation results demonstrated the effectiveness of
the new approach in detecting malicious applications on mobile devices (detection rate above 94% in
most scenarios) and the feasibility of running such a system on mobile devices (CPU consumption was
3% on average).

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Personal digital assistants (PDAs), mobile phones and, most re-
cently, smartphones have evolved from simple mobile phones into
sophisticated yet compact minicomputers that can connect to a
wide spectrum of networks, including the Internet and corporate
intranets. In addition to enabling users to access and browse the
Internet, these devices can receive and send emails, SMSs, and
MMSs, connect to other devices for exchanging information/syn-
chronizing and activating various applications. Designed as open,
programmable, networked devices, smartphones are no longer im-
mune to malicious attacks and are susceptible to various new
threats such as viruses, Trojan horses, and worms, all of which
are well-known from the desktop computer platforms. An infected
smartphone can inflict severe damages to both the user and the
cellular service provider. Malware can partially or fully disable a
smartphone; cause unwanted billing; steal private information
ll rights reserved.
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(possibly by phishing and social engineering methods); or infect
every name in a user’s phonebook (Piercy, 2004). Attack vectors
of malware propagating into smartphones include cellular net-
works, Bluetooth, Internet (via Wi-Fi, GPRS/EDGE or 3G network
access), USB, and other peripherals (Cheng et al., 2007).

The challenges for smartphone security are becoming very sim-
ilar to those that personal computers encounter (Muthukuma
et al., 2008) and common desktop-security solutions are down-
sized to mobile devices. As a case in point, Botha et al. (2009) ana-
lyzed common desktop-security solutions and evaluated their
applicability to mobile devices. However, some of the desktop
solutions (i.e., antivirus software) are inadequate for use on smart-
phones since they consume too much CPU and memory and might
rapidly drain the power source. In addition, since most antivirus
software detection capabilities depend on the existence of an
updated malware signature repository, antivirus users are not
protected whenever an attacker spreads a previously never
encountered malware. Since it may take antivirus vendors several
hours to several days to identify the new malware, generate a sig-
nature, and to update their clients’ signature database, hackers
have a substantial window of opportunity (Dikinson, 2005). Also
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some malware, targeted to a specific and small number of mobile
devices (e.g., to extract confidential information or to track the
owner’s location), may take time before they are noticed.

In light of smartphone vulnerability and the variety of smart
mobile devices and operating systems, a more generic approach
is required to rapidly detect malware that has never been encoun-
tered (presumably belonging to some known malware class) even
before its signature is announced and while it is being installed or
activated on a device.

In this research, an innovative host-based intrusion detection
system (HIDS) for detecting malware on mobile devices is suggested.
Detection is accomplished by continuously monitoring a mobile de-
vice in order to identify malicious temporal behavior. The frame-
work relies on a lightweight agent (in terms of CPU, memory and
battery consumption) that continuously samples various features
on a device, analyzes collected data and infers the state of the device.
The basic premise on which the framework rests is that behavioral
patterns over time, of a potential, previously unencountered mal-
ware, presumably belonging to some known malware class, are an
important factor in facilitating accurate detection. Thus, inspecting
behavioral changes in monitored devices or network traffic over
time can help in detecting malware even when its signature is un-
known. This can be achieved by providing a high level definition of
a malware class to detect malware instances, some of which are un-
known, with a relatively small number of temporal patterns as de-
fined by a security expert. The pattern definitions represent
malware class behavior and not signatures of specific malware in-
stances. For example, it would be desirable that the system alert
the user to any application causing a combination of high CPU usage,
high system context switch state and an increasing garbage collec-
tion trend which might indicate a denial-of-service (DoS).

Detection focuses on the behavioral patterns that the user or
security expert describes. Typical examples might include high
network activity after SD-card access or too many SMS messages
sent to addresses that are not in the contact list in a predefined
period of time.

Inspecting the temporal behavior of a specific mobile device in
order to determine its status also requires context-sensitive inter-
pretation of accumulated data. This high level, context-sensitive,
knowledge-based abstraction of time-oriented data is referred to
as a temporal abstraction of the data (Shahar, 1997).

For detecting malware patterns the knowledge-based temporal
abstraction (KBTA) method is employed for representing the mo-
bile device’s security domain knowledge and deriving temporal
abstractions. The KBTA method has been used successfully to sup-
port many tasks, especially diagnostic or therapeutic decision-sup-
port (Shahar and Musen, 1996) in the medical domain. In the
security domain, a network, computer or any other device can be
regarded as a patient and by inspecting temporal data related to
a device or a network, the security expert can infer whether it is in-
fected or not. The KBTA method was proposed and evaluated in
Shabtai et al. (2009) for detecting malware on personal computers
or within network traffic. However, since mobile devices are lim-
ited in regard to the CPU and battery resources, some modification
and customization of the KBTA method was required. It was done
by reducing its functionalities and adapting its ontology for incre-
mental computation.

The proposed method was evaluated on Android-based mobile
devices. Android,1 Google’s new framework for mobile devices, is
among the most significant smartphone operating systems today.
Android was chosen due to the ease it displays in implementing
and deploying applications and its openness in extracting many use-
ful raw parameters and events from its framework.
1 http://www.android.com/.
The rest of the paper is organized as follows. Section 2 presents
an overview of related work. Section 3 describes the knowledge-
based temporal abstraction method. Next, Section 4 introduces
the proposed intrusion detection system for the Android architec-
ture and its components. In Section 5, the KBTA implementation on
Android and the applied modifications are described in order to
adapt the method to run on mobile devices. In Section 6 the results
from evaluating the proposed approach is presented while Sec-
tion 7 discusses the advantages of the described architecture, and
potential future research.
2. Related work

The overview of related academic literature indicates that most
extant research on protecting mobile communication devices has
focused on applying and evaluating host-based intrusion detection
systems (HIDS). These systems, using anomaly- or rule-based
methods, extract and analyze (either locally or by a remote server)
a set of features indicating the state of the device. Several systems
are reviewed in this section and summarized in Table 1.

Moreau et al. (1997) utilized artificial neural networks (ANNs)
to detect anomalous behavior indicating a fraudulent use of the
operator services (e.g., registration with a false identity and using
the phone to high tariff destinations). The detection was based
on 16 features representing mean and standard deviation of the to-
tal duration and number of long- and short-term national and
international calls.

The intrusion detection architecture for mobile networks
(IDAMN) system (Samfat and Molva, 1997) uses both rule-based
and anomaly detection methods. IDAMN offers three levels of
detection: location-based detection (a user is active in two differ-
ent locations at the same time); traffic anomaly detection (an
area having normally low network activity experiencing high net-
work activity); and detecting anomalous behavior of individual
mobile phone users. In order to detect anomalous behavior, a pro-
file is generated by monitoring the user’s telephone activity (e.g.,
call duration, inactivity time between calls, number of handovers
performed). In addition, the user’s location in the network (roam-
ing) is monitored by generating a state machine with the proba-
bility of moving from one location (cell) to another. Preliminary
evaluation shows that IDAMN can raise an alarm in less than
one second from the time the intrusion occurs and that it has
an intrusion detection rate higher than 70% and a false alarm rate
lower than 5%.

Yap and Ewe (2005) employ a rule-based behavior checker solu-
tion that can detect malicious activities in the system. The authors
present a proof-of-concept scenario using a Nokia mobile phone
running a Symbian OS. In the demonstration, a behavioral detector
detects a simulated Trojan horse attempting to use the message
server component, without authorization, to create an SMS
message.

Cheng et al. (2007) present SmartSiren, a collaborative, proxy-
based virus detection system for smartphones. Single-device and
system-wide abnormal behaviors are detected by joint analysis
of communication activity of monitored smartphones. The
SmartSiren architecture consists of a back-end proxy that interacts
with lightweight agents on the protected devices. The agents
merely collect information and relay it to the proxy which per-
forms the analysis and sends out the alerts. SmartSiren was evalu-
ated by simulating a virus outbreak based on a three-week SMS
trace collected from a national cellular service provider in India.
The results show that without SmartSiren, virus-generated mes-
sages accounted for 68% of the messages that were sent. With
SmartSiren in place, the total number of message sent was reduced
to about 28%.

http://www.android.com/


Table 1
Academic research on protection of mobile devices.

Paper Approach Detection method Detects

Moreau et al. (1997) HIDS Anomaly detection
using ANN

Fraudulent use of the operator services such as high rate calls

Samfat and Molva
(1997) (IDAMN)

HIDS, NIDS Anomaly detection;
Rule-based detection

A user is active in two different locations at the same time; traffic anomaly detection; and detecting
anomalous behavior of individual mobile phone users based on the telephone activity (such as call
duration) and user’s location in the network

Yap and Ewe (2005) HIDS Signature-based
detection

Proof of concept- detects unauthorized attempt to create SMS message

Cheng et al. (2007)
(SmartSiren)

HIDS, NIDS Anomaly detection Detects anomaly behavior of the device and outbreak of worm-related malware

Schmidt et al.
(2009)

HIDS Anomaly detection Monitor a smartphone running Symbian operating system and Windows Mobile in order to extract
features for anomaly detection. These features are sent to a remote server for further analysis

Bose et al. (2008) HIDS Signature-based
detection.

Using temporal logic to detect malicious activity over time that matches a set of signatures
represented as a sequence of events

Kin et al. (2008) HIDS Signature-based
detection

Detects, and analyzes previously unknown energy-depletion threats based on a collection of power
signatures

Buennemeyer et al.
(2008) (B-SIPS)

HIDS, NIDS Anomaly detection Detects abnormal current changes and its correlation with network attack

Nash et al. (2005) HIDS Statistical method
(linear regression)

Detects processes that are likely to be battery-draining attacks

Jacoby and Davis
(2004) (B-BID)

HIDS Signature-based
detection

Monitoring power consumption against ‘‘normal” power consumption range. Once an anomaly is
detected, various system data is matched against known attack signatures

Miettinen et al.
(2006)

HIDS, NIDS Event correlation Combines both host-based and network-based data collection in order to be able to utilize the
strengths of both detection approaches

Hwang et al. (2009) Authentication Keystrokes dynamics Collects 5 features to train and build a classifier capable of detecting impostors. Utilized artificial
rhythms and tempo cues to overcome problems resulting from short PIN length
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Schmidt et al. (2009) monitored a smartphone running a Sym-
bian OS by extracting features that describe the state of the device
and which can be used for anomaly detection. These features were
collected by a Symbian monitoring client collected and forwarded
to a remote anomaly detection server (RADS). The gathered data
was analyzed in order to distinguish between normal and abnor-
mal behavior. The results indicated that most of the top ten appli-
cations preferred by mobile phone users affected the monitored
features in different ways.

Special effort has been devoted to intrusion detection systems
(IDS) that analyze generic battery power consumption patterns
to block distributed denial-of-service (DDoS) attacks or to detect
malicious activity via power depletion (Racic et al., 2006; Martin
et al., 2004). Kim et al. (2008) presents a power-aware, malware-
detection framework that monitors, detects, and analyzes previ-
ously unknown energy-depletion threats. The framework collects
power consumption samples and generates power signatures.
These signatures are used for detecting mobile malware by mea-
suring the similarity between power signatures using the v2-dis-
tance measure. Experimental results on an HP iPAQ device
running a Windows Mobile OS, demonstrated a 99% true-positive
rate in classifying mobile malware. The battery-sensing intrusion
protection system (B-SIPS) Buennemeyer et al., 2008 for mobile
computers alerts when abnormal current changes are detected.
The B-SIPS correlates host-based anomaly detection with the Snort
IDS which provides signature-based detection of attack.

Nash et al. (2005) presented a design for an intrusion detection
system that estimated power consumption according to a linear
regression model, based on parameters such as CPU load and disk
accesses, to determine the amount of energy used on a per process
basis and to identify processes that could potentially exhaust
batteries.

Jacoby and Davis (2004) presented a host battery-based intru-
sion detection system (B-BID). The underlying assumption is that
monitoring the device’s electrical current and evaluating the corre-
lation with known signatures and patterns can facilitate attack
detection. The electrical current is measured and once an anomaly
is detected, various data (e.g., network activity, CPU usage, process
count) is collected and matched against known attack signatures.
This data can also be forwarded to the network administrator for
further analysis.

Miettinen et al. (2006) claim that host-based approaches are re-
quired, since network-based monitoring alone is not sufficient to
counter the future threats. They adopt a hybrid network/host-
based approach. A correlation engine on the back-end server filters
the received alarms according to correlation rules in its knowl-
edge-base and forwards the correlation results to a security mon-
itoring GUI to be analyzed by security administrators. Hwang
et al. (2009) evaluated the effectiveness of keystroke dynamics-
based authentication (KDA) on mobile devices. Their empirical
evaluation focused on short PIN numbers (four digits). The pro-
posed method yielded a 4% misclassification rate.

The above solutions disregard temporal features as first-class-
citizens when analyzing data captured from networks or devices.
They do not consider the behavioral changes along time but only
analyze snapshots of data representing the system’s state.

Some studies have focused on temporal features to represent
the normal temporal behavior of the user, the system or the net-
work. Bose et al. (2008) propose an interesting behavioral detec-
tion framework, based on temporal logic, for detecting mobile
worms and trojan horse activity over time. A malware behavior
is represented by describing the temporal ordering of an applica-
tion’s actions which may reveal malicious intent even when each
action alone may appear harmless. A database of malicious behav-
ior signatures was generated by studying more than 25 distinct
families of Symbian OS malware. Next, a two-stage mapping tech-
nique constructs these signatures in run-time from the monitored
system events and API calls in the Symbian OS. The system differ-
entiates the malicious behavior of malware from the behavior of
benign applications by training a classifier based on support vector
machines (SVM). The evaluation of both simulated and real-world
malware samples indicated that behavioral detection can identify
current mobile viruses and worms with more than 96% accuracy.
The temporal logic approach was used in Talbi et al. (2008) for
detecting polymorphic malicious codes that exploit buffer-over-
flow vulnerabilities.

Other studies have explored the detection of malicious or
abnormal temporal behavior (Lane and Brodley, 1999) on personal



A. Shabtai et al. / The Journal of Systems and Software 83 (2010) 1524–1537 1527
computers or servers. In (Seleznyo and Mazhelis, 2002), the user’s
normal temporal behavior is extracted as a temporal-probabilistic
tree in which the nodes correspond to actions (such as reading an
e-mail) and the edges correspond to the transition from one action
to the next one. Temporal features such as action duration and
temporal relations between actions are stored in the temporal-
probabilistic tree nodes and edges. Each branch of the tree repre-
sents one or more possible behavioral patterns of a user.

Ghosh et al. (1999) utilized anomaly detection to represent a
program’s normal behavior as a frequency table-storing sequence
of system calls. Naldurg et al. (2004), Ning et al. (2001), and Kohout
et al. (2002) describe attack patterns or normal behavior patterns
based on Allen’s temporal relations (Allen, 1983) such as ‘‘before”,
‘‘after” and ‘‘meet” between events (e.g., a login by user u should be
followed by a logout). Ye (2000) employed a Markov chain to mod-
el normal temporal behavior of a computer as a sequence of com-
puter-related actions. Observed behavior is updated with a
probability that supports the normal behavior. A low probability
indicates a high likelihood of abnormal behavior. Li et al. (2002)
employ association-rules with time granularity to define a normal
behavior pattern within different temporal intervals (e.g., network
traffic during weekend versus weekdays).

Morin and Debar (2003) used the chronicle formalism to reduce
the number of alerts raised by multiple sensors (i.e., intrusion
detection systems and logging tools) such as Snort and Syslog
and to improve the quality of the alerts by reducing false alarms.
Chronicle formalism, which is based on reified temporal logic,
was applied to define temporal patterns as a set of events and time
constraints. Several scenarios are provided in order to exemplify
the benefits of the method. These temporal-based studies perceive
anomalous or malicious behavior by identifying sequences of
events. However, as will be described below, the KBTA method
demonstrated in this paper also considers the duration as well as
the values of events and parameter. This makes it possible to detect
changes over time (trends). Furthermore, since the KBTA method
assumes that the interpretation of various events and parameters
is dependent on the current state of the system (i.e., context), the
derivation of the temporal behavior is context-based, resulting in
a more accurate depiction of the reality. In addition, the aforemen-
tioned solutions usually focus on a specific task or domain (e.g.,
analyzing and detecting attacks based on phone call records or bat-
tery consumption) rather than providing an overall solution that
supports detection of malware using different types of data
sources.

Fuzzy cognitive map (FCMs) (Aguilar, 2005; Stach et al., 2005)
were also incorporated into intrusion detection systems. In (Siraj
et al., 2004), FCMs are used for defining alerts based on concepts
(i.e., information provided by various sensors) and causal relation-
ships of these concepts and the alerts. FCMs differ from the KBTA
method in several points. First, in the semantic links between con-
cepts, FCMs support only a causal link between two concepts
which indicates the degree of causality (i.e., the effect of the cause)
of one concept from another. The KBTA method supports other
semantic relationships between concepts, including the ab-
stracted-from relation (indicating which concepts are used for
the abstraction of a concept); the necessary-context relation (indi-
cating which contexts are required for the abstraction of a con-
cept); and the components relation (indicating the concepts that
are required for pattern derivation). Second, time is not handled
as an inherent factor in the definition of a FCM. Thus, it does not
support the definition of the duration of a concept and the time
interval between concepts. Third, in addition to pattern matching
that is supported by both, the KBTA and FCM, the KBTA also sup-
ports the abstraction of high level concepts from raw data (such
as state, rate and trend). These high level concepts can later be
used to define temporal patterns.
3. The knowledge-based temporal abstraction method

Temporal abstraction (TA) is a common and important tempo-
ral-reasoning (TR) task. TA incorporates a computational mecha-
nism that integrates raw, time-stamped data and knowledge to
extract and summarize meaningful interpretations of the raw,
time-stamped data. The knowledge-based temporal abstraction
(KBTA) method (Shahar and Musen, 1996) is a computational
framework for supporting the TA task. KBTA was proposed for an
automated derivation of context-specific interpretations and con-
clusions (i.e., temporal abstractions), from the raw time-oriented
data, by using a domain-specific knowledge-base (e.g., a security
ontology specialized for abstracting meaningful patterns from
time-oriented security data).

In general, the KBTA method is defined as follows. The input in-
cludes a set of time-stamped parameters (e.g., CPU usage) and
events (e.g., keyboard activity or touch screen activity) that create
the necessary interpretation context (e.g., ‘‘no user activity” when
the touch screen and keyboard are not used). The output includes
a set of interval-based, context-specific parameters at the same or
at a higher level of abstraction and their respective values (e.g., a
period of 5 min of a high CPU usage while no user activity was
detected).

A knowledge engineer defines the domain knowledge (e.g.,
security ontology) by using five KBTA entities and the relations be-
tween them. Five inference mechanisms (temporal context forma-
tion, contemporaneous abstraction, temporal inference, temporal
interpolation and temporal pattern matching) are then applied in
parallel to derive the high level abstractions from the raw data
(Shahar, 1997). Fig. 1 presents a description of the KBTA method.
Time-stamped measurements of primitive parameters and time-
stamped events, as well as the predefined KBTA ontology are the
input to KBTA’s five inference mechanisms. The outputs of the five
inference mechanisms are time-intervals of contexts, abstractions
and patterns that can be automatically monitored and stored for
later inspection and exploration.

The KBTA ontology comprises five ontological entities that de-
fine the domain ontology which is related to a subject in the spe-
cific domain (e.g., smartphone). The five ontological entities are:
primitive parameters, abstract parameters, contexts, events, and
patterns.

Primitive parameters are raw measurable data collected from
different sensors. In general, primitive parameters may be either
numeric (e.g., CPU usage level, number of transmitted packets via
Wi-Fi) or symbolic (e.g., the name of the operating system).

Events are raw data and represent actions caused by the system
or the user, such as starting an application, touching the screen or
installing an application. Events can be described by numeric or
symbolic attributes. For example, potential attributes for an appli-
cation start-up are the name of the application (symbolic) and the
process-id running it (numeric).

Contexts are the ‘‘state of affairs” of a monitored subject (e.g., a
mobile device). Contexts are induced dynamically, sometimes by
the existence of a primitive or abstract parameter with a certain
value, most commonly, however, by the existence of an event.
Since the contexts affect the interpretation of parameters, the same
dataset may be interpreted differently within different contexts.
For example, high CPU usage on a mobile device may be inter-
preted as normal within the ‘‘user activity” context and abnormal
within the ‘‘no user activity” context (which might indicate the
existence of a resource draining malware).

Abstract parameters are derived from one or more parameters
(primitive or abstract). Part of the knowledge inherent in the ab-
stract parameter is a classification function that maps the values
of the ‘‘abstracted-from” parameters to the values of the abstracted
parameter. For example, ‘‘CPU Usage STATE” is an abstract param-
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eter that is abstracted-from the primitive parameter ‘‘CPU Usage”
(the percentage of time the CPU wasn’t idle). A classification func-
tion can map 0–10% CPU Usage to a LOW state.

A context is required in order to derive an abstract parameter;
within different contexts, the abstract parameter will have differ-
ent classification functions. Thus the same input may result in dif-
ferent output values. There are three types of abstract parameters:
state, gradient (or trend), and rate. These correspond to three types
of abstractions, respectively. State abstraction maps the values of
the abstracted-from parameter values to a state-describing set of
values (e.g., LOW CPU usage level). Gradient (or trend) abstraction
determines the direction of the change of values in a measured
parameter (e.g., INCREASING number of pictures taken by the cam-
era). Rate abstraction classifies the amplitude of a rate of change of
a selected parameter (e.g., FAST changing number of pictures taken
by the camera).

The objective is to derive, for each abstraction, the longest pos-
sible time interval from the raw data with the same value. A per-
sistence function, which is also part of the abstract parameter
Fig. 2. An example of SD-card information leakage pattern. Raw data is plotted at the b
above the data. | = an event; N = sent packets via Wi-Fi; |- - -| = a context open interval;
knowledge, determines the maximal gap between two time-inter-
vals that enables their concatenation into a longer interval.

Patterns are a complex set of value and time constraints defined
over a set of parameters (primitive and abstract), events, and con-
texts. There are two types of constraints: local and global (Chakrav-
arty and Shahar, 2000). A local constraint is defined for one concept
over one time interval, for example, HIGH CPU usage state for more
than 10 min. A global constraint defines the pair-wise temporal
relation between two intervals based on Allen’s 13 temporal rela-
tions (Allen, 1983). A typical example is ‘‘HIGH number of pictures
taken followed within 2 minutes by HIGH outgoing network traffic
for at least 5 min”.

In addition, there are two types of patterns: linear and repeat-
ing. A linear pattern occurs only once. A repeating pattern is a lin-
ear pattern that occurred two or more times (for example, the
above pattern occurred four times in one week).

Fig. 2 shows an example of the temporal abstraction process.
The figure illustrates the derivation of a SD-card information leak-
age pattern that may indicate that a trojan in the mobile device is
ottom. Events and the abstraction computed from the data are plotted as intervals
|—| = an abstraction (derived concept) interval.
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transmitting private data stored on the SD-card to a remote server.
The input to the KBTA inference mechanisms consists of raw mea-
surements of ‘‘Sent packets” at T1–T7, and the ‘‘Access to SD-card”
event, which generates the Post access to SD-card context. Then,
within the Post access to SD-card context, an INCREASING sent
packet trend is interpreted from the raw data of the ‘‘Sent packets”.
The SD-card information leakage pattern is derived from this trend.

Two methods are applicable for defining the domain knowledge
and more specifically mobile phone security ontology (specializing
in detecting malware). The first method involves the security ex-
pert using a dedicated knowledge acquisition tool to define new
patterns based on new classes of malware that were identified
by the security community. The second method involves applying
temporal data mining process, as suggested in Moskovitch and
Shahar (2009), on data collected from devices infected by a new
class of malware. The temporal data mining process may reveal
new temporal patterns that the KBTA method can employ in order
to detect the new malware in run-time.

4. Intrusion detection systems for android-based devices

Google’s Android, a comprehensive software framework tar-
geted towards smart mobile devices, includes an operating system,
a middleware and a set of key applications. Android has emerged
as an open-source and open platform that provides mobile devices
with APIs for most of their software and hardware components.
Specifically, it allows third-party developers to develop their own
applications. The applications are written in the Java programming
language based on the APIs provided by the Android Software
Development Kit (SDK). Although not that common, developers
can also develop and modify kernel-based functionalities for
smartphone platforms. To evaluate the proposed KBTA method, a
lightweight host-based intrusion detection system (in terms of
CPU, memory and battery consumption) for Android was
developed.

The basis of the intrusion detection process consists of monitor-
ing, collecting and optionally pre-processing various parameters
and events. Parameters can be pre-processed by aggregating or
normalizing according to time-intervals. Various detection units
then analyze the features that have been sent to them following
collection and pre-processing.

The primary detection unit, presented in this paper, is KBTA-
based. However multiple processors can be attached to the agent,
each employing its own method of detecting malicious behavior
and outputting a threat assessment accordingly. Each time interval
Fig. 3. The Android H
all of the pending threat assessments are weighted to produce a
single consistent alert. The weighting process, which is per threat
type, i.e., virus threat assessments are weighted separately from
worm threat assessments, also includes a smoothing phase (com-
bining the generated alert with the past history of alerts) in order
to avoid instantaneous false alarms.

After the weighting phase, a proper notification is displayed to
the user. Moreover, the alert is matched against a set of automatic
or manual actions that can be taken to mitigate the threat. Among
the automatic actions are uninstalling an application without any
user interaction, killing of a process, disconnecting all radios,
encrypting data, changing firewall policy and more. A manual ac-
tion may involve uninstalling an application with user interaction.

The components of the agent can be clustered into four main
groups (Fig. 3): feature extraction, main service, processors and
the graphical user interface. The Feature Extractors communicate
with various components of the Android framework, including
the Linux kernel and the application framework layer in order to
collect raw features. The Feature Manager triggers the feature
extractors and the requests for features every predefined time
interval. In addition, the feature manager may apply some pre-pro-
cessing on the raw features that are collected by the feature extrac-
tors. A Processor is an analysis and detection unit. It is provided as a
pluggable, separate component that can be seamlessly installed
and uninstalled. It receives feature vectors from the Agent Service,
analyzes them and outputs threat assessments to the threat
weighting unit (TWU). Each processor may expose an advanced con-
figuration screen. Processors may be rule-based, knowledge-based
or classifiers or anomaly detectors based on machine-learning
methods. The TWU receives the analysis results from all active pro-
cessors and applies an ensemble algorithm (such as majority vot-
ing, distribution summation etc.) in order to derive a final and
more accurate decision regarding the device infection level. The
Alert Manager receives the final ranking as produced by the TWU.
It then can apply some smoothing function in order to provide a
more persistent alert and to avoid instantaneous false alarms.
Examples of such functions may be moving average and leaky-
bucket. The smoothed infection level is then compared with prede-
fined minimum and maximum thresholds.

The Agent Service is the most important component in the intru-
sion detection system since it synchronizes the feature collection,
detection and alert process. The Agent Service manages the detec-
tion flow by requesting new samples of features, sending the
new information to the processors and receiving the final result
from the Alert Manager. The Loggers provide logging options for
IDS architecture.
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debugging and for evaluating detection algorithms. The Config
Manager manages the configuration of the agent (such as active
processors, active feature extractors, alert threshold, active loggers,
sampling time interval, operation modes configuration). The Alert
Handler triggers an action as a result of a dispatched alert (e.g., vi-
sual alert in the notification bar; uninstalling an application;
sending notification via SMS or email; locking the device and
preventing further usage; disconnecting any communication chan-
nels). The Processor Manager registers/unregisters processors and
activates/deactivates processors. The Operation Mode Manager
changes the agent from one operation mode to another based on
the configuration. This will activate/deactivate processors and fea-
ture extractors. The change from one operation mode to another
(i.e., from full security mode to normal mode) is triggered as a re-
sult of changes in resource levels (battery, CPU, network).

The last component is the GUI which provides the user with the
means to configure agent parameters, activate/deactivate (for
experimental usage only) visual alerts and visual exploration of
collected data. The agent also provides a communication layer
which allows it to register to a remote management system and
update that system with the device’s current status and with addi-
tional information to allow a security officer to explore the data
when an alert is raised.

In the next section, the modified incremental Knowledge-Based
Temporal Abstraction process which was integrated as a processor
in the Android HIDS is described.
5. The modified incremental KBTA process

Since the KBTA process is complex and computationally expen-
sive, in this study it was modified and adapted for resource-limited
mobile devices. As its basic input, the processor receives various
raw features/data (i.e., name, value, time). The features are re-
ceived in temporal order, each predefined time interval; this is
the basis of the incremental computation process. The abstraction
process is incremental in the sense that each time new data arrives
the abstraction unit creates new abstractions or updates existing
abstractions, and thus it is not necessary to recalculate abstractions
Fig. 4. Pseudo-code describing
derived from previous data. Such a form of computation provides
rapid calculation and thus allows real-time monitoring of derived
abstractions and patterns.

After receiving primitive parameters and events, the processor
creates new contexts, ends existing contexts, creates or updates
states and creates or updates trends. These actions are carried
out in a loop which may last as long as any of the new or existing
elements are being created or modified, respectively. This process
is finite and it converges fairly quickly given a proper knowl-
edge-base. For the remainder of this section, references to ‘‘new”
elements includes both new and existing elements that have been
modified (i.e., had their value or duration changed).

The pseudo-code in Fig. 4 describes the modified KBTA process.
The computation loop starts upon receiving new primitives. The
first step, context destruction, is fairly straightforward. While iter-
ating each existing context, the mechanism checks if there are any
new/modified elements that meet the destruction conditions of the
context. If such an element exists, the destroying element trims the
context. For example, an existing context, such as the USB connec-
tion, is destroyed by a USB disconnection event.

The creation of new contexts follows the destruction of the
existing ones. In order to create a context, an element matching
any of its inductions must be located. If such an element exists, a
context is created (as specified in the knowledge-base). An
assumption made here is that the process is not retrospective
and contexts starting/ending in the past cannot be created. The ba-
sis for this assumption is that data comes sequentially to the KBTA
processor due to the nature of the HIDS.

The next stage in the process is the creation of abstractions. The
classification function of trend and state is as in the ordinary KBTA
process. However the persistence function, which was noted in
Section 3, could be simplified due to the fact that data arrives in
constant time intervals. A primary manifestation of the incremen-
tal nature of the algorithm is that upon creation of abstractions by
the classification function, the persistence function immediately
concatenates these abstractions (if possible) into longer intervals.

Once the process of determining the existing contexts and
abstractions stabilizes, the creation of patterns starts. The modified
KBTA process only employs two of Allen’s 13 temporal relations:
the abstraction process.
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before and overlapping. Combined with a set of properties on the
gap between the elements, the length of the overlap and the dis-
tance of the overlap from the beginning of the first element, these
two relations are able to imitate all of Allen’s temporal relations.
The patterns are also created incrementally, that is, in each itera-
tion (receiving new data), partial patterns consisting of the ele-
ments matching the pattern’s local and global constraints are
saved. A complete pattern is obtained once the elements enabling
the completion of a partial pattern are found. After the creation of
linear patterns, the creation of repeating patterns ensues.

An important design decision taken in the modified Incremental
KBTA process is that elements (both raw and abstracted data) are
only kept in memory for a limited amount of time in order not to
exhaust the memory of the mobile device; they are not stored in
a local database. This timeframe is configurable and chosen to al-
low complex pattern computation; thus partial patterns and the
elements comprising them may be kept as long as they do not vio-
late the local and pair-wise constraints associated with the pattern.

Theorem 1. The computational complexity of the modified and
incremental KBTA-based detection unit is constant.

Proof. Let,

k – the number of concepts in the ontology

t – the time window for removing existing elements

The context abstraction destroys and generates contexts. The
first action involves checking for all the latest context instances in
the element collection for possible destroying elements; the latter
traverses all of the contexts defined in the ontology and seeks
the generating elements. Since for either operation there are at the
most k contexts and k possible destroying/generating elements, the
context abstraction is bounded by O(k2).

The state and trend abstractions are performed by checking for
each state/trend in the ontology and for the possibility of abstrac-
tion from among all the latest instances in the element collection.
Only new elements can be abstracted and among the new
elements there is at most one for each concept. Thus the state
and trend abstractions are bounded by O(k2).

In each iteration of the whole loop, at least one new element is
created (otherwise the whole loop will be terminated). Each
element can only be created once during the invocation of
‘‘Incremental_Abstraction”. Thus the whole loop will be executed
at the most k times, which results in the upper bound of O(k3).

The last step, when no new elements are being created, is
pattern derivation. In the time interval (window) t, each concept in
the ontology has at most t instances. While each pattern has at
most k elements, there are at most tk partial patterns. Since there
are at most k patterns in the ontology, the pattern derivation is
bounded by O(tk � k).

Thus the modified incremental abstraction process is bounded
by O(tk � k + k3), where k, the number of concepts in the ontology,
and t, the time window, are constants. This concludes the proof. h

Next comes the monitoring phase, which depends on the output
of the KBTA process. The knowledge-base includes: a description of
the high level elements (states, trends, linear and repeating pat-
terns) that represent malicious behavior along with value and/or
duration constraints on the elements; a base severity level (in %);
and a recommended mitigation strategy for the agent (e.g., killing
malicious process, removing application). Threat assessments are
generated when suitable elements (fitting the constraints) are
computed and the severity level of the generated threat assess-
ment is calculated according to Eq. (1) where ActualDuration is
the duration of the element that triggered the generation of the
threat assessment; MinimalDuration is the minimal duration of
the element needed to produce the threat assessment; and the Bas-
eSeverity is the severity level attached to the monitored element
with the minimal duration.

ActualDuration
MinimalDuration

� BaseSeverity ð1Þ
6. Evaluation

This section presents the evaluation of the proposed KBTA-
based detection framework. In Section 6.1 five Android malicious
applications, which were developed and used for the evaluation,
are presented. Section 6.2 describes the KBTA ontology for detect-
ing malware on mobile devices that was defined for the evaluation.
Section 6.3 presents the results of the experiments.

6.1. Description of malicious applications

There are several types of malware threats that target mobile de-
vices. This research focuses on attacks against the phones themselves
and not the service provider’s infrastructure. Four classes of attacks on
a mobile device were identified (Botha et al., 2009): unsolicited infor-
mation, theft-of-service, information theft and DoS. Since no mali-
cious applications are yet available for Android, five malicious
applications, that perform DoS and information theft attacks, were
developed for evaluating the agent and the KBTA processor. DoS at-
tacks against mobile phones can be categorized into the two types.
The first attempts to flood and overwhelm a device by issuing fraud-
ulent service requests; the second tries to drain the power resources
of the device. Information theft attacks against mobile devices can be
classified as targeting either transient information or static informa-
tion. Transient information includes a mobile device’s location, power
usage patterns, and other temporal data that a mobile device typically
does not record. Static information refers to any information that a
mobile device intentionally and persistently maintains/sends on be-
half of its owner, i.e., device identification data, contact information,
phone numbers, programs and media files. Attackers may attempt
to steal both types of information if they perceive it as valuable. Fol-
lowing is a description of the malware that were developed.

6.1.1. Schedule SMS and lunar lander
The first malware, which belongs to the class of information

theft, includes two Android applications, Schedule SMS and Lunar
Lander, exploiting the Shared-User-ID feature. In Android each
application requests a set of permissions that is granted at installa-
tion time. The Shared-User-ID feature enables multiple applications
to share their permission sets, provided they are all signed with the
same key and explicitly request the sharing. It is noteworthy that
the sharing is done behind the scenes without informing the user
or asking for approval, resulting in implicit granting of permissions.
The first application is Schedule SMS, a truly benign application that
sends delayed SMS messages to people from a contact list, for which
the application requests necessary permissions. The second appli-
cation, Lunar Lander, is a seemingly benign game that requests no
permissions. Nevertheless, once both applications are installed
and the Lunar Lander obtains an ability to read the contacts and
send SMS messages, it exhibits a Trojan horse-like behavior leaking
all contact names and phone numbers through SMS messages to a
predefined number. This resembles RedBrowser, a Trojan horse
masquerading as a browser that infects mobile phones running
J2ME by obtaining and exploiting SMS permissions.

6.1.2. HTTP upload
The second malicious information theft application that was

developed, HTTP Upload, also steals information from the device.
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It exploits the fact that access to the SD-card does not require any
permission. Therefore, all applications can read and write to/from
the SD-card. The application requires only the Internet permission
and in the background it accesses the SD-card, steals its contents
and sends it through the Internet to a predefined address.

6.1.3. Snake
The third and last information theft application masquerades as

a Snake game and misuses the devices camera to spy on the unsus-
pecting user. The Snake game requests Internet permission for
uploading top scores. While depicting the game on the screen,
the application unobtrusively takes pictures and sends them to a
remote server.

6.1.4. Tip calculator
The Tip Calculator is a malicious application that unobtrusively

performs a DoS attack. When a user clicks the ‘‘calculate” button to
calculate the tip, the application starts a background service that
waits for some time and then launches several hundreds of CPU-
consuming threads. The effect of this attack is an almost absolute
paralysis of the device. The system becomes very unresponsive
and the only effective choice is to shutdown the device (which also
takes some time). An interesting observation is that the Android
system often kills a CPU-consuming service but always keeps on
re-launching it a few seconds later. Particularly disturbing is the
fact that the malware is able to achieve such an effect without
requesting any permission.

6.1.5. Malware injection
A second DoS malware is a virus consisting of PC and Android

components. The first component infects the PC and upon detect-
ing a USB connection of an Android-based device, it installs and
executes the Android component. The installation occurs without
alerting the user which makes it possible to silently install the An-
droid virus that is automatically granted permission to process and
block outgoing phone calls.

6.2. Defining a mobile security ontology

The intrusion detection agent monitors every t seconds (accord-
ing to the agent’s settings) more than 160 raw parameters and
events (i.e., features), including some that defined basic abstrac-
tions and complex patterns. The features appeared within the cat-
egories: Applications (e.g., installation, removal, activation); Binder
(inter-process communication); CPU load; Phone calls; Hardware;
Messaging; Operating System; Permissions; Power; Memory; Key-
board; Scheduler; System configuration; Network; Touch-screen
Table 2
Examples of concepts from the mobile security ontology.

Concept name Concept
type

Description

CPU usage Primitive Measured in% and can be any value
Garbage collections Primitive Measured in number of garbage coll
Access to SD-card Event An application accessing to the SD-c
Connecting to USB Event Phone is connected to a PC via USB c
Disconnecting from USB Event The USB cable is disconnected from
Post access to SD-card Context Generated by an access to SD-card e

afterwards
Connected to USB Context Generated by connecting to USB eve

disconnecting from USB occurs
Sent packets trend. Post access to

SD-card
Trend Derived from the primitive paramete

following optional symbolic values:
User activity state State Derived from the primitive paramete

optional symbolic values: activity, n
Context switches state. Post

application-run
State Derived from the primitive paramete

following optional symbolic values:
and more. The IDS was installed on five Android devices which
were monitored and later deliberately infected with the malwares.

The first step in the evaluation was to define and load the secu-
rity knowledge-base according to the KBTA ontology. The ontology
was defined in XML format. Examples of basic concepts from the
mobile security ontology are presented in Table 2. In addition to
the pattern in Figs. 2 and 5 present four patterns and their deriva-
tion trees as defined in the mobile phone security ontology.

The pattern shown in Fig. 2 illustrates the derivation of a SD-
card information leakage pattern that possibly indicates that a Tro-
jan in the mobile device is transmitting private data stored on the
SD-card to a remote server. The pattern emerges when a ‘‘Post ac-
cess to SD-card” context is generated by an ‘‘access to SD-card”
event. Then, within the ‘‘Post access to SD-card” context, an
INCREASING ‘‘sent packet trend” is interpreted from the ‘‘Sent
packets” raw data.

The camera abuse pattern (Fig. 5) is derived from the ‘‘Pictures
Taken/min” state and ‘‘Pictures Taken/min” trend when induced
within the context of non-system applications with ‘‘Camera per-
mission exists” (i.e., there is a non-framework application, that
was installed by the device owner or as a result of a malicious
act, and that application has permission to use the camera). The
pattern will be generated when a ‘‘High” and ‘‘Increasing” number
of pictures are taken. It is noteworthy that the interpretation of the
state and trend of the number of taken pictures that generated the
pattern is specific to the encompassing context. Had only
system applications with ‘‘camera permissions” existed, the inter-
pretation would be different and the pattern would not have been
generated.

The malware injection pattern (Fig. 5) depicts a situation where
an application is installed on the mobile device while connected to
a PC via a USB cable when there is no user activity. First, the per-
sonal desktop computer is infected by an Android virus (without
the user knowing about it). This virus carries an Android malware
payload. When an Android phone is connect to the PC via USB
cable, the Android virus identifies the connected phone and exe-
cutes the installation of the malware payload on the phone. Fol-
lowing the installation, the Android virus executes the malware
which disables any outgoing phone calls. This process occurs with-
out user interaction and without any indication of the installation
or the execution of the application (see Fig. 6). The ‘‘user activity”
state is derived from two ‘‘primitives”: average screen pressure and
average dwell time, each characterizing the usage of the touch
screen and the keyboard, respectively.

The SMS abuse pattern (Fig. 5) is generated when no user activ-
ity exists and at the same time there is an increase in the number
of ‘‘outgoing SMS/min”. The derivation of the latter is specific to
from 0 to 100
ections/min and can be any non-negative value
ard (e.g., opening/reading a file, listing a directory)
able

the PC
vent; starts at the time of the access to the SD-card and ends 30 seconds

nt; starts with the occurrence of connecting to USB event and ends when a

r sent packets within the context of post access to SD-card; mapped to the
Increasing, same, decreasing
rs avg screen pressure and avg keyboard dwell time; mapped to the following

o activity
r context switches within the context of post application-run; mapped to the

normal, high



Fig. 5. Definition of mobile malware temporal patterns.
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Fig. 6. Malware injection process.
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the context indicating that non-framework applications have the
ability to both read the contact list and send SMS messages.

The system overload pattern (Fig. 5) detects resource consum-
ing applications. It is derived from a concurrent presence of an
increasing trend of garbage collections and high states of context
switches and CPU usage. The three abstractions are induced within
the post-application-run context (which is generated by an appli-
cation-run event) and indicate a strain on the memory, scheduler
and CPU, all caused by a running application.

In addition to a verbal description of the patterns, a more formal
definition can be obtained by using CAPSUL language (Chakravarty
and Shahar, 2000). The following example defines the malware
injection pattern:

Linear Pattern: Malware Injection Pattern
Context: Connected to USB
Linear Components:

Parameter Component:
User Activity STATE
Abstracted From:

Average Screen Pressure
Average Dwell Time

Local Constraints:
value = No_Activity
duration > 2min

Linear Components:
Parameter Component:

Application Installation EVENT
Local Constraints:

value = True
Global Constraints:

Quantitative Gap Constraint:
User Activity STATE DURING Application Installation

EVENT
Output Value of Pattern:

Value Function: value = Malware Injection

An additional capability of the KBTA-based detection unit is to re-

duce false alarms. Let us assume that the IDS applies anomaly
detection to the user’s behavior (e.g., biometric parameters such
as keyboard and touch screen activity, or sequences and duration
of applications that the user usually activates). When the anomaly
level is above a pre-set threshold, the system assumes that the de-
vice is not being used by the legitimate owner and can initiate an
action such as locking the device, encrypting all the data, and asking
for additional identification in order to use the device again. Anom-
aly detectors are prone to false alarms and an unjustified action,
such as device locking, may be annoying to the device owner.
Fig. 7 provides an example of using the KBTA for reducing false
alarms. In this example, the anomaly level that is produced by the
anomaly detector is input to the KBTA mechanism as primitive
parameter. The ontology provides the knowledge for deriving the
anomaly level state which is interpreted differently within various
contexts, such as the one induced by the occurrence of a call (or
sending of an SMS) to a number not from the contact list.
6.3. Evaluation results

In order to evaluate the effectiveness of the method, the defined
ontology and the Android implementation, the KBTA-based IDS
was activated for one week on five Android devices belonging to
different owners. In the course of the week, the devices were used
normally. The goals of evaluation were to:

� check the ability of the KBTA-based IDS to detect the five mali-
cious applications
� test the sensitivity of the IDS to the sampling time interval
� identify false alarms
� measure CPU usage while the IDS is activated on the device

Thus, the main goal of the evaluation was not only to evaluate
the performance of the method in terms of standard measures such
as true-positive and false positive but also to understand the sen-
sitivity of these measures to the sampling time interval. This
should be investigated since smartphones have limited resources.
Moreover, the KBTA method’s inference mechanisms are sensitive
to the sampling interval (e.g., the persistency computation and the
trend abstraction). Thus, a larger sampling time interval will con-
sume less CPU and battery but there is the possibility of missing
a pattern. Consequently, based on the nature of the malware
used for the evaluation, with most exhibiting abrupt and short
activity, the following sampling time interval were chosen: 2, 5,
8 and 15 s.
6.3.1. Detecting malicious software
Each malware was activated 10 times on each of the five de-

vices, with the IDS sampling interval set at 2 s, 5 s, 8 s and 15 s. Ta-
ble 3 summarizes the results in terms of average detection time
and rate (averaged over all activations and all devices). Fig. 8 de-
picts the detection time for the five malware as a function of the
sampling time interval. Similar detection intervals for 2, 5 and
8 s can be observed with a major gap between 8 s and 15 s. Thus,
monitoring with a sampling interval of 8 s is preferred since it will
cause less of a strain on the system while maintaining reasonable
detection times.



Fig. 7. Context-aware interpretation of an anomaly detection alerts.
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Fig. 8. Presenting the detection time for the five malware as a function of the
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Table 3
Malware detection results.

Malware Description Action when detected Sampling
interval (sec)

Detection
time (sec)

Detection
rate (%)

Snake Information theft – while playing a snake game, in the
background the application is quietly taking pictures and sending
them off to a remote server

Automatically removed the
application

2 29 100
5 33 100
8 36 100

15 50 100
Tip calculator Denial-of-service – launches a background service that in turn

spawns hundreds of threads; thus effectively overloading the
system

Automatically removed the
application

2 32 100
5 41 100
8 47 100

15 72 100
Malware injection Denial-of-service – A virus on a PC secretly installs a virus on the

Android which blocks outgoing phone calls
Offers to uninstall the
application

2 14 98
5 14 96
8 17 98

15 27 96
SD-card leakage

(HTTP uploader)
Information theft – reads sensitive information stored on the SD-
card and other locations and sends it to a remote server

Disabling all
communications (Wi-Fi,
Cellular)

2 7 100
5 9 100
8 16 96

15 22 94
Lunar Lander & SMS

scheduler
Information theft – exploiting the Shared-User-ID and reading
contacts and sending them via SMS

Offers to uninstall the
applications

2 5 100
5 8 100
8 – 0

15 – 0
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When analyzing the detection rate, the malware injection pat-
tern and the SD-card malware were not detected in several of
the activations. The malware injection pattern went undetected
due to ‘‘accidental” touch screen activity during the installation.
This prevented the pattern from being generated since it is neces-
sary that neither touch screen nor keyboard activity occur at the
time of the installation (while connected via USB).

The SD-Leakage malware went undetected three times when
setting the sampling interval to 15 s and twice when setting the
sampling interval at 8 s. The detection failure was due to the fact
that latency in the network connection may hinder the derivation
of the sent packets trend and result in a different temporal behav-
ior than that expected by the pattern. One of the qualities of the
temporal patterns in KBTA is the ability to define behavior in a fuz-
zy manner that can account for different yet similar temporal se-
quences. The network latency can thus be accounted for by
further ‘‘fuzzing” the pattern’s definition.

A SMS abuse pattern was not detected when the sampling time
interval was set at 8 and at 15 s. This was because an essential
component of the SMS abuse pattern is the increase in the number
of non-system applications with the ability to read the contacts
and send SMSs, which is detected using a trend abstraction. The
direction of the trend (i.e., increasing, decreasing or same) is ob-
tained by calculating the value variation over the time interval
and comparing it with the threshold specified in the knowledge-
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base. However, changing the sampling interval affects the calcu-
lated variation which in turn affects the direction of the trend. This
prevents the pattern from being generated. To conclude, once the
optimal sampling time interval is determined, the ontology can
be modified accordingly.

6.3.2. False alarm scenarios
The fuzzy nature of the patterns can be perceived both as an

advantage and disadvantage. On the one hand, the fuzzy status of-
fers the ability to capture previously unencountered behavior (e.g.,
new malware); on the other, the fuzziness may also become a hin-
drance by causing false alarms. During the activation on the five
devices, false alarms were identified in the ‘‘Camera abuse” (Snake
application), malware injection and SD-card leakage patterns.

A false camera abuse pattern can occur when installing a legit-
imate third-party (non-system) camera application, and using that
application rapidly. To reduce false alarms, the pattern can be
modified with additional components. For example, assuming that
the malware will attempt to leak the pictures from the device via
the network without storing the pictures, a check for lack of access
to the SD-card events (for storing pictures) or for abnormal net-
work traffic states and trends can be added.

A false malware injection occurred during the experiments
when a user connected his/her Android phone to a PC (via USB
cable) and used the ‘‘adb install” command to install an applica-
tion. The adb command is mainly used by developers or expert
users. Thus, when such a false alarm occurs, the advanced user
should be able to identify whether it is a false alarm caused by
intentionally installing the application or the result of a malicious
attack.

The SD-card leakage false alarm may occur when an application
is accessing the SD-card (e.g., a camera application storing the pic-
tures, looking for ringtones) and at the same time another applica-
tion is sending data over the Internet (e.g., Android automatic
synchronization mechanisms). This scenario can be overcome by
adding the ability to link the concepts (access to the SD-card and
network traffic state/trend) to the same application and to identify
whether the application is a framework application.

6.3.3. Measuring the strain on the CPU caused by the IDS
The CPU usage was recorded while activating the KBTA-based

IDS with a sampling interval of 2 s and while normally using the
Android device. Fig. 9 depicts the CPU usage measured during
the course of one hour. It is evident that for the most part the
CPU usage is approximately 3% with peaks of less than 9% while
processing data. The rate of extreme peaks can be accounted for
by extreme activity of other applications or by the system at the
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Fig. 9. CPU consumption while activating the KBTA-based IDS.
time of the measurement. To conclude, the IDS does not hinder
the system nor greatly affect the user experience and can be
deemed as unobtrusive and with low resource demands.
7. Summary and conclusions

This paper presents a modified, lightweight version of the KBTA
method for detecting malware on mobile devices by analyzing
temporal security data. The data is analyzed in order to identify
new malware compatible with predefined temporal patterns spec-
ified at a high level of abstraction. The implementation of the mod-
ified, incremental KBTA method on Android is capable of
automatically and continuously creating new abstractions from a
continuous flow of raw data. These abstractions are automatically
monitored to alert the user (or another process) whenever a suspi-
cious pattern emerges, indicating the possible presence of a
malware.

The new approach can also quickly adapt to new malware clas-
ses by updating the knowledge-base (i.e., security ontology). In
addition, the proposed method is platform-independent and the
same ontology can fit any smartphone or mobile operating system.

The KBTA method provides concise, meaningful summaries of
large amounts of temporal security data in terms familiar to the
user or security experts. In addition, KBTA defines malware pat-
terns in a fuzzy fashion as a set of constraints rather than as a
hard-coded signature for each and every known malware. Conse-
quently, it facilitates detection of instances of malware even when
they have not been encountered before.

A prototype, capable of creating and monitoring temporal
abstractions and patterns on Android mobile phones, was imple-
mented. The prototype demonstrated the capabilities of the meth-
od in defining and evaluating new temporal patterns that might
indicate the existence of malware. The KBTA method is platform-
independent and as such, it can be applied to new domains, with-
out additional coding, by providing domain knowledge and domain
raw data to the KBTA framework. The ontology evaluated in this
paper is defined using concepts in a high level of abstraction
(e.g., no user activity, low memory state etc.) that are common to
any smartphone and thus can be applied to any smartphone or mo-
bile operating system (e.g., Symbian, Windows Mobile, and
iPhone). The main effort in such case is the extraction of raw data
(primitive parameters and events) from the system and the imple-
mentation of the remedial actions to be taken when a temporal
pattern representing malicious behavior is detected. These two
tasks are platform dependent and are more accessible and easy
to implement in open-source platforms such as the Android. Thus,
given a proper implementation of the detection framework on an
alternative smartphone OS, the proposed ontology will be efficient
at the same extent.

An additional advantage is that the system can help in integrat-
ing alerts from other sensors as primitive parameters and
‘‘smoothing” the alerts by applying the temporal abstraction pro-
cess which facilitates context-based interpretation of the alerts.
The user would be notified only if the alert instances persist; thus
reducing the amount of false alarms.

The applicability of a KBTA-based intrusion detection system
was demonstrated by developing a powerful framework without
excessive demands on resources. The intrusion detection frame-
work is also modular and it can be extended with new analysis or
detection units (i.e., algorithms), such as using machine-learning
anomaly detection and classification algorithms. As a case in point,
the experiments in (Shabtai and Elovici, 2010) used the same
framework presented here. In the experiments several classifica-
tion and anomaly detection algorithms (Decision Tree, Naïve Bayes,
Bayesian Networks, k-Means, Histogram and Logistic Regression)
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were evaluated for their capability in detecting unknown malicious
applications.

The KBTA detection unit potentially supports both misuse
detection and anomaly detection. Anomaly detection can be sup-
ported by defining temporal patterns of normal behavior (for
example, normal behavior of network connections) and by identi-
fying time-intervals in which the normal behavior patterns are not
derived as proposed in Seleznyo and Mazhelis (2002). Manual def-
inition of temporal patterns along with the output of a temporal
data mining process employed on raw and abstracted data will de-
fine patterns for both normal and malicious behavior. The current
study is being extended by conducting research that deals with
such a temporal data mining framework and new results will
hopefully be presented in the future.

Future work will also focus on developing an Android-user
interface for defining patterns and the ontology. Finally, the KBTA’s
pattern matching mechanism can be extended to support the der-
ivation of patterns (optionally assigned with a level of certainty)
even if not all of its components exist, resulting in partial patterns
that can provide better accuracy and a faster response time.
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